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ABSTRACT

MICROBIOME DATA ANALYSIS USING COMPOSITIONAL DATA APPROACH

BOYRAZ, Aslı

Ph.D., Department of Health Informatics

Supervisor: Assist. Prof. Dr. Aybar C. ACAR

Co-Supervisor: Assist. Prof. Dr. Özkan Ufuk NALBANTOĞLU

NOVEMBER 2022, 94 pages

The microorganisms present in the human body play a crucial role in maintaining human health, and
the environmental microbiome influences the human microbiome. Advanced understanding of the
human microbiome and indoor microbiota is the first step towards understanding the potential rela-
tionships between health and microbiome. Next Generation Sequencing (NGS) enables identification
and study of a large number of microorganisms in a short time. With the identification of a large num-
ber of microorganisms, the studies for the understanding of their role in the environment and human
health have become important. This thesis examines the production and the properties of microbiome
data and statistical challenges of microbiome analysis. First, we give a brief history of the various
methods of analysing microbiome data. We are mainly concerned with performing microbiome analy-
sis using compositional approaches. The proposed procedures were illustrated with the data from 16S
rRNA amplicon sequencing but those also apply for microbiome shotgun metagenomics. This disser-
tation describes the basics of compositional data (CoDa) analysis introducing log-ratio methodology.
The first part of this thesis deals with the problem of establishing relationship based on the micro-
bial features annotated with taxonomic information, where a compositional alternative to phylogenetic
grouping of microbiome data (Principal Microbial Groups - PMGs) is proposed to enable working with
low-level microbial features (OTUs or ASVs). The usefulness of the proposed procedure is illustrated
on a Cirrhosis dataset to search for biomarker candidates. The second part of the thesis focuses on the
microbial transmission and PMGs are aimed to investigate any hint to track microbial transmission.
An experiment that was conducted at Erciyes University Hospital for this purpose, and swab samples
were gathered from the Intense Care Unit (ICU) to construct microbiome profiles. Microbial trans-
mission is carried out between objects, so it is expected that resulting microbiome profiles of samples
should have similar microbial structure. In this case, not taxonomic changes but OTU/ASV abundance
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changes between samples need to be investigated. PMGs procedure were applied to microbial trans-
mission dataset in order to analyze the contagion. PMGs provide a valid grouping for OTUs alternative
to taxon grouping using CoDa approach and it offers the possibility of working with coarse group of
OTUs, which are not present in a phylogenetic tree in microbiome analysis.

Keywords: microbiome; compositional data; balance; microbial biomarkers

v



ÖZ

BİLEŞİMSEL VERİ YAKLAŞIMI KULLANARAK MİKROBİYOM VERİ ANALİZİ

BOYRAZ, Aslı

Doktora, Sağlık Bilişimi Bölümü

Tez Yöneticisi: Dr. Öğr. Üyesi. Aybar C. ACAR

Ortak Tez Yöneticisi: Dr. Öğr. Üyesi. Özkan Ufuk NALBANTOĞLU

Kasım 2022, 94 sayfa

İnsan vücudunda bulunan mikroorganizmalar, insan sağlığının korunmasında çok önemli bir rol oynar
ve çevresel mikrobiyom, insan mikrobiyomunu etkiler. insan mikrobiyomunun ve iç mekan mikrobiyo-
tasının ileri düzeyde anlaşılması, mikrobiotanın insan sağlığı ile olası ilişkilerini anlamaya yönelik ilk
adımdır. Yeni Nesil Dizileme (YND) teknolojisi kısa sürede çok sayıda mikroorganizmanın tanımlan-
masını ve incelenmesini sağlar. Çok sayıda mikroorganizmanın kısa sürede tanımlanmasıyla birlikte,
çevre ve insan sağlığındaki rollerinin anlaşılmasına yönelik çalışmalar da önem kazanmıştır. Bu tez,
mikrobiyom veri analizi üretimini, mikrobiyom verilerinin özelliklerini, mikrobiyom analizinin ista-
tistiksel zorluklarını incelemektedir. Öncelikle, mikrobiyom verilerini analiz etmenin çeşitli yöntem-
lerinin kısa bir tarihçesini anlattık. Temel olarak, bileşimsel (compositional) yaklaşımları kullanarak
mikrobiyom analizi yapmakla ilgilendik. Oluşturulan prosedürler 16S rRNA amplikon dizilemesinden
elde edilen verilerle gösterildi, ancak bu prosedurler aynı zamanda shotgun metagenomik verileri için
de geçerlidir. Bu tez, log-oran metodolojisini tanıtan bileşimsel veri analizinin temellerini açıklar. Bu
tezin ilk bölümü, mikrobiyal özelliklere dayalı ilişki kurma problemi ile ilgilenir ve düşük seviyeli
mikrobiyal özelliklerle (OTUs veya ASVs) çalışmayı sağlamak için mikrobiyom verilerinin filoge-
netik gruplandırılmasına alternatif olarak bileşimsel (compositional) bir yaklaşım (Temel Mikrobiyal
Gruplar - TMG) önerilir. Önerilen prosedürün kullanışlılığı Siroz veri setinde biyobelirteç adaylarını
aramak için gösterilmektedir. Tezin ikinci kısmı mikrobiyal bulaşmaya odaklanmaktadır ve TMG mik-
robiyal bulaş takibi için herhangi bir ipucunun araştırmasında kullanılması amaçlanmıştır. Bu amaçla
Erciyes Üniversitesi Hastanesi’nde bir deney yapılmış ve mikrobiyom profilleri oluşturmak için Yoğun
Bakım Ünitesinden (YBÜ) sürüntü örnekleri alınmıştır. Mikrobiyal aktarım nesneler arasında ardarda
gerçekleştirilir. Bu nedenle numunelerin ortaya çıkan mikrobiyom profillerinin benzer mikrobiyal ya-
pıya sahip olması beklenir. Bu durumda örnekler arasındaki taksonomik değişikliklerin değil, OTU-
/ASV bolluk değişikliklerinin araştırılması gerekir. Bulaşmayı analiz etmek için mikrobiyal iletim veri
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setine Temel Mikrobiyal Gruplar prosedürü uygulanmıştır. TMG’ler, OTU’lar için CoDa yaklaşımını
kullanarak takson gruplamasına alternatif olarak geçerli bir gruplama sağlar ve mikrobiyom analizinde
filogenetik bir ağaçta bulunmayan kaba OTU’lar grubuyla çalışma imkanı sunar.

Anahtar Kelimeler: mikrobiyom, bileşimsel veri, balans, mikrobiyal biyobelirteç
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TÜBİTAK tarafından desteklenmiştir [1059B141601395].

I would like to thank my family, especially my father, for their financial and moral support throughout
my doctoral process. I am grateful to Vera Pawlowsky-Glahn and Juan Jose Egozcue, my second
family in Spain, made me meet with the CODA community. I would like to thank my advisors Aybar
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CHAPTER 1

INTRODUCTION

Microorganisms are an essential part of life on the earth and can exist in association with virtually
any living thing. Not only living things, microorganisms have been found in every part of the built
environment such as in the air, on surfaces and on building materials [1]. The interaction between
the environmental and human microbiome highly influences human health. The microbes present in
the human body play a crucial role in maintaining human health, and the environmental microbiome
influences the human microbiome [2]. Advanced understanding of the ecology of the indoor micro-
biota and human microbiome is the first step towards understanding potential relationships with health
outcomes. Next Generation Sequencing (NGS) has led to an explosive growth of studies of micro-
biome at a very large-scale without requiring cultivation in vitro. NGS enables identification and study
of a large number of microorganisms in a short time. With the identification of a large number of
microorganisms, the studies for the understanding of their role in the environment and human health
have become important. Microbiome-wide association studies have established that numerous diseases
are associated with changes in the microbiota [3, 4]. Most of the methods proposed for microbiome
analysis are intended to address two main issues: first, whether there is a global association between
the microbiome and a phenotype of interest; second, which specific taxa are associated with the dis-
ease [5]. There has not been a proposed knowledge and techniques to reveal microbial transmission
mechanisms. Transmission of microorganisms from reservoirs within the built environment to hu-
man occupants has historically focused on pathogens; however, microorganisms can be transferred to
and from occupants and environmental reservoirs within buildings. Advanced understanding of the
ecology of the indoor microbiota is the first step towards understanding potential relationship with
health outcomes. Built environment microbiome analysis may help tracking biothreats and control-
ling hospital infections, and so developing early warning systems. Such studies generate large-scale
high-dimensional count and compositional data, which are the focus of this dissertation.

Microbiome profiles are produced through sequencing specific genes (often the 16S rRNA gene) that
provides diversity of bacterial taxa or shotgun metagenomics that provides further insights at the
molecular level. Microbiome profiles are typically high-dimensional and very sparse, leading to two
main problems in data analysis. The main approach to deal with these problems is to annotate mi-
crobial features with taxonomic information. The taxon grouping allows summarizing microbiome
abundance with a coarser resolution in a lower dimension. The similarities or relationships between
samples are addressed correspondingly. However, bacterial strains in the same taxonomic group have
been found to vary in their relationships with the interested parameters, suggesting that each of them
may have a distinct impact on the association [6]. Thus, correlating selected taxa with the parameters
can often lead to controversial results in microbiome studies. If members in a taxon have opposite
associations with the same parameter, lumping them into one taxon variable will produce degradation
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of the possible associations. On the other hand, microbial transmission is carried out between objects,
so it is naturally expected that resulting microbiome profiles of samples should have similar microbial
structure. In this case, not taxonomic changes but OTU/ASV abundance changes between samples
need to be investigated.

1.1 Research Questions

Can CoDa make use of highest granularity of microbial genome features while overcoming high di-
mensionality?

Can CoDa use to develop any other grouping of microbial features without using a phylogenetic tree
based on relative abundances?

1.2 Contributions of the Study

We propose a procedure that groups microbial features attending the compositional character of the
data making use of the highest possible resolution of microbial features (OTUs). This mathemati-
cally consistent aggregation procedure collapses microbial features into units as an alternative to taxon
grouping, here called Principal Microbial Groups (PMGs). The procedure reduces the need for user-
defined aggregation and offers the possibility of working with coarse group of OTUs, which are not
present in a phylogenetic tree.

1.3 Organization of the Thesis

The first part of the this thesis presents the background information of how microbiome data is pro-
duced and the statistical challenges of the microbiome data on the way of translating research to clinical
practice and also presents a review of the network inference techniques from microbiome data.

The second part of the thesis focuses on the review of compositional data (CoDa) analysis.

The third part of this thesis deals with the problem of establishing relationship based on the microbial
features annotated with taxonomic information, where a compositional alternative to phylogenetic
grouping of microbiome data (Principal Microbial Groups) is proposed to enable working with low-
level microbial features (OTUs or ASVs). The usefulness of the proposed procedure is illustrated on
Cirrhosis dataset to search for biomarker candidates.

The fourth part of the thesis focuses on the analysis of microbial transmission. An experiment was
conducted in the Erciyes University Hospital for this purposes, and swab samples were gathered from
an Intense Care Unit (ICU) to construct microbiome profiles. Consecutively contaminated objects
were analyzed using Principal Microbial Groups.
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CHAPTER 2

MICROBIOME DATA AND COMPOSITIONALITY

In this chapter, the details of the how microbiome data are produced and the statistical challenges of
the microbiome data are presented.

2.1 Microbiome Data

Microorganisms are an essential part of life on the earth and can exist in association with virtually
any living thing as well as every part of the built environment [1]. The microbiome is defined as a
collection of microorganisms.

The first step of producing microbiome data is gathering swap samples and sample sequencing. Next
Generation Sequencing (NGS) has led to an explosive growth of studies of microbiome in very large-
scale without cultivation in vitro. NGS enables identification and study of a large number of microor-
ganisms in a short time. Two main approaches are there to produce microbiome profiles: amplicon
sequencing and shotgun sequencing. Amplicon sequencing relies on sequencing a phylogenetic marker
gene after polymerase chain reaction (PCR) amplification [7]. For bacteria and archaea, the marker
gene is the 16S ribosomal RNA gene. The 16S rRNA gene contains both highly conserved areas and
hypervariable sites, denoted as V1–V9. The conserved regions can be targeted with PCR primers while
the hypervariable regions are specific to each microbial species and make possible to distinguish the
different microbes [7]. The V1–V3 and V4 regions are most commonly targeted. PCR amplification
creates thousands to millions of copies of the DNA target region, called amplicons. PCR amplicons
are then sequenced using HTS platforms and multiple nucleotide sequences, also known as reads, are
obtained [8]. Shotgun is an untargeted sequencing method that extracts all genomic material for mi-
crobial community classifications and gene annotations [9]. The result of 16S and shotgun sequencing
is a virtual “library” of many short sequence fragments.

The second step is sequence processing. Bioinformatics pipelines are available for processing micro-
biome sequence data (i.e mothur[10] and QIIME[11]). The bioinformatics pipeline consists of five
main steps: Preprocessing and quality control filtering, operational taxonomic unit (OTU) binning,
taxonomy assignment, construction of the abundance table and phylogenetic analysis. Preprocessing
and quality control filtering consists on first assign the sequences to samples (demultiplexing) and
then sequences are quality filtered to remove too short sequences, too many ambiguous base pairs
and chimeras [7]. Then, OTUs are constructed. Currently two different approaches exist for OTU

construction: Clustering similar sequence fragments into OTUs and Sequence Variants (SV) meth-
ods. OTUs/SVs are the minimum unit for microbiome studies for downstream analysis. Taxonomy
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assignment is then obtained by comparing OTU sequences to microbial reference databases such
as GreenGenes (http:// greengenes.second.genome.com) for 16S and Kyoto Encyclopedia of Genes
and Genomes (KEGG; https://www.genome.jp/kegg/pathway.html) for shotgun sequencing. Then, se-
quence data can be represented as an abundance table of counts representing the number of sequences
per sample for a specific taxon [7, 12].

2.1.1 OTU Clustering Methods

The analysis of microbiome data begins with the construction of OTUs. Picking OTUs is basically
"clustering" reads. All the sequences are clustered into OTUs based on a distance matrix at a specified
threshold [13, 14]. For each cluster a "representative sequence" is determined and it is called OTU

representative. OTU picking procedure outputs a “otu table” which is an abundance table of counts of
OTU representatives for each sample.

Three different methods for OTU picking is proposed: denovo, closed and open-reference. Closed ref-
erence method compares reads to a sequence in a reference database and recruites into a corresponding
OTU. Denovo method clusters reads into OTUs as a function of their pairwise sequence similarities.
Open reference method is combined of closed and denovo methods. First it clusters sequences against
a database of references sequences, then uses denovo clustering on those sequences which are not
similar to any reference sequences. Which method to choose is depend on what is known about the
microbiome community prior. If the studied microbial community is well studied, then reference
databases have many representatives and closed reference otu picking strategy is suitable. Denovo
method is suitable to discover new species.

Distribution-based operational taxonomic unit (dbOTU3) is another OTU picking method which is
different than other OTU picking strategies. It takes account distribution of sequences across samples.
This allows to distinguish ecologically-distinct but sequence-similar organisms [15]. For example,
OTU methods would likely group two sequences in the same OTU if they differ by only one nu-
cleotide. However, if the two sequences never appeared together in the same sample, an observer
would probably conclude that that one nucleotide difference corresponds to two distinct groups of
organisms, one which lives in one group of samples, the other living in the other [15].

2.1.2 Problems about OTU Clustering Methods

The main problem with OTU base methods are clustering multiple different sequences in the same
cluster. However, even a single nucleotide change of with in a gene sequence might lead to a different
organism. Moreover, NGS of the 16S rRNA gene on Illumina instruments is commonly used to iden-
tify taxa present in a given sample, but suffers from an error rate of 0.1% per nucleotide [16]. In such
experiments, sequence errors caused by PCR and sequencing are difficult to distinguish from true bio-
logical variation. The classic approach to overcome sequencing errors is to cluster amplicon sequences
into OTUs based on an arbitrary sequence identity threshold. This approach reduces problems caused
by erroneous sequences but also reduces phylogenetic resolution because sequences below the identity
threshold cannot be differentiated [17].

On the other hand, OTU based methods create obstacles discovering new species due to limits of
reference databases and comparison of different microbiome studies. Closed reference OTU picking
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strategy clusters reads using a reference database if the reads sufficiently similar to a reference se-
quence. Similarity is determined based on a threshold such as 97% so, for example one base change
is not considered as biological variation even if the reads were from two different species. Moreover,
OTUs from two different dataset can be compared only if the same reference databases are used. How-
ever, biological variation that is not represented in the reference database is lost during assignment to
closed reference OTUs [18]. Denovo OTU picking strategy clusters reads together that are similar to
one another. Obtained denovo OTUs are directly depend on the dataset and this dependency does not
allow comparison of denovo OTUs in two different dataset. dbOTU3 method tries to brings a solution
to the problem of closed reference otu picking, but resulting OTUs only depend on the dataset and it
also does not allow OTU comparison between different datasets [15].

Sequence Variants (SV) method brings a solution to all those problems. Each SVs corresponds a
biological variation which is independent from the processed data and obtained SVs can be compared
between different samples.

2.1.3 Sequence Variants (SV) Methods

The goal of SV methods is to infer accurate biological template sequences from noisy reads. SV
methods infer the biological sequences in the sample from errors on the basis of the number of re-
peated observations of distinct sequences. SV methods can distinguish SVs differing by as little as one
nucleotide.

Algorithms such as Deblur [17], DADA2 [18] and UNOISE2 [19] use error profiles to resolve sequence
data into exact sequence features. This task is generally divided into two phases. First; correcting
point errors to obtain an accurate set of amplicon sequences (denoising). Second; filtering of chimeric
amplicons [19]. The result is a set of predicted biological sequences which three method calls them
with different terminology; DADA2 calls as “sequence variants”, Deblur calls as “sub-OTUs” and
UNOISE calls as “zero-radius OTUs zOTUs)”.

Oligotyping [20] is another method to resolve SVs and it improves traditional OTU picking by includ-
ing position-specific information from 16S rRNA sequencing to identify subtle nucleotide variation
and by discriminating between closely related but distinct taxa.

The resulting output from SV methods is a table of DNA sequences rather than OTU groups and counts
of these different sequences per sample. SVs are reusable, reproducible, and comprehensive [18]. The
most important opportunity of SV methods is that each SVs corresponds a biological organism which
is independent from the processed data and obtained SVs can be compared between different samples
[18]. Recent literature on microbiome analysis recommend that SV methods should replace OTU-
based approaches for all applications [18, 21].

2.1.3.1 Dada2

DADA2 (Divisive Amplicon Denoising Algorithm) is a divisive partitioning algorithm to infer sam-
ple sequences by correcting amplicon errors that incorporates quality information without construct-
ing OTUs [18]. DADA2 enables a complete pipeline produces merged, denoised, chimera-free Svs.
Reads with the same sequence are grouped into unique sequences with an associated abundance. “The
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abundance p-value” is calculated for each unique sequence. This p value is used to determine unique
sequences that can not be explained by errors in amplicon sequencing. Singletons have an abundance
p-value of 1. A low p indicates that there are more reads of the sequence than can be explained by errors
introduced during the amplication and sequencing. If the smallest p-value falls below the threshold,
a new partition is formed with that unique sequence as its center. Unique sequences are then allowed
to join the partition most likely to have produced them. Division continues until all unique sequences
are consistent with being produced as errors from the sequence at the center of their partition. In other
words, division continues until all abundance p-values are greater than the threshold [18].

2.1.3.2 Unoise2

UNOISE2 clusters the unique sequences in the reads. Input to the UNOISE2 algorithm is the set of
unique read sequences with abundance bigger than a threshold γ where γ = 4 by default. Unique reads
with low-abundance are discarded because they are more likely contain errors that are reproduced by
chance or bias [19]. A cluster has a centroid sequence with higher abundance and has members that
are similar sequences with lower abundances. Members are inferred to be reads of the same centroid
sequence containing one or more point errors.

Let C be a cluster centroid sequence with abundance aC and M be a member sequence of that cluster
with abundance aM . Let d be the Levenshtein distance (number of differences including both sub-
stitutions and gaps) between M and C. The abundance skew of M with respect to C is defined to be
skew(M,C) = aM

aC
[22]. Sequences are considered in order of decreasing abundance. A sequence

(Q) is assigned to cluster C if skew(Q,C) ≤ β(d). If no such C exists, Q becomes a new centroid.
The final set of centroids are reported as the predicted amplicons [19].

2.1.3.3 Deblur

DEBLUR is a greedy deconvolution algorithm based on Illumina error profiles [17]. DEBLUR pro-
duces sub-OTUs (called sOTUs). Deblur algorithm first sorts sequences by abundance. Second, from
the most to least abundant sequence, the number of predicted error-derived reads is subtracted from
neighboring reads based on their Hamming distance, using an upper bound on the error probability. Fi-
nally, sequences whose abundance drops to 0 after subtraction are removed. After applying DEBLUR,
only reads likely to have been presented to the sequencer are retained. However, it is possible that the
reads would still contain chimeras originating from PCR. Reads are filtered for denovo chimeras using
UCHIME [19] as implemented by VSEARCH [23] using modified parameters [17].

Unlike DADA2 and UNOISE2, DEBLUR operates on each sample independently [17]. DADA2 and
UNOISE2 algorithm can not be applied only a read, at least a sample data is necessary to infer SVs
[18].

2.2 Statistical Challenges of Microbiome Data

The microbiome data is produced as a result of sample sequencing and constructing OTUs or inferring
SVs. The abundance of OTUs/SVs is quantified by sorting and counting the DNA fragments in each
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sample. Resulting count data are typically high-dimensional and very sparse, which are two main
problems in microbiome data analysis.

One of the available approaches to deal with the above mentioned problems is to annotating con-
structed OTUs/SVs with taxonomic information using databases and agglomerating taxa to any rank.
Representative sequences are classified taxonomically via alignment against a database of previously
characterized reference sequences. Agglomerating taxa to any rank (phylum, genus etc.), microbiome
abundance is summarized with a coarser resolution in lower dimension. The similarities or relation-
ships between samples are addressed correspondingly. This approach helps to reduce dimensionality
as well as sparsity.

On the other hand, microbiome profiles are usually represented using relative abundances of the
observed OTUs/SVs. Relative data harbors the relationships between the features in the dataset
[24, 25, 5]. Relative data needs to be analyzed carefully because it is compositional. Widely used
statistical methods are not valid on compositional data such as evaluating correlations might not cap-
ture the structural relations [26]. Recent awareness of considering microbiome data as compositional
data, Compositional Data Analysis (CoDA) approach has been started to be employed on microbiome
studies.

2.3 Compositional Data Approach for Microbiome Analysis

2.3.1 Why Microbiome Data is Compositional

In metagenomics, the abundance of genes is quantified by sorting and counting the DNA/RNA frag-
ments. The resulting count data is high-dimensional and affected by high levels of technical and bi-
ological noise that make the statistical analysis challenging [27]. After aligning the sequencing reads
to the reference microbial genomes, the observed count data usually depend on the true underlying
composition of microbiome genomes, amount of genetic material extracted from the community, and
the sequencing depth [28]. In order to account for the large variability in the total number of sequenc-
ing reads across different subjects, the observed counts are often normalized to a relative measure of
abundances rather than absolute counts, which yields the compositional data [29]. The compositional
data lives in the simplex, not in Euclidean space, so many data analyses, including distance measures,
correlation coefficients, and multivariate statistical models turn invalid in simplex [30].

For the compositional data, it is not a requirement for the arbitrary sum to represent complete unity.
Microbiome abundance data is lack information about potential true components and hence exist as
incomplete compositions [30]. Although, microbiome abundance data have compositional properties,
but differ slightly from the formally defined compositional data in that they contain integer values only
[30]. Eventually the individual values of the observed counts are irrelevant. The only thing that is
accessible is the relationships between points, which is their ratios. As a result, analyzing microbiome
data is actually analyzing the "relative abundance" data.

Let consider a n×dmicrobiome data matrix where d genes (SVs or OTUs) correspond to the columns
and the n (multivariate) samples are displayed in the rows (n < d). Samples are collected from
different objects and for each sample the number of gene values sum to a constant that is unrelated
with the absolute amount of genes in the object of origin. Each sample, which is the each row in the
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data matrix, is considered as a composition of genes. A row is denoted by a vector x whose elements
xis are the number of genes extracted from the samples for genes i=1,. . . ,d (count number in OTU

table).

Consider the following observed and absolute counts for 3 genes.

Gene1 Gene2 Gene3
sample 1 5 3 2

Table 1: Table for Observed Counts. Observed Library Size: nj = 10

Gene1 Gene2 Gene3
sample 1 8 4 3

Table 2: Table for Absolute Counts. Absolute Library Size: Nj = 15

Let xi = ai/s with ai denoting the absolute gene amount from gene i and s the total gene amount is
s =

∑d
j=i aj [31]. We neither know s nor the ai. But the number of genes ratios, xi/xj = ai/aj

is the only information maintained from the original absolute amounts thus, constant gene ratios can
be correctly inferred even on relative data. Taking the log of these ratios makes them symmetric with
their reciprocal values [15].

The approach to compositional data analysis originated by John Aitchison uses ratios of parts as the
fundamental starting point for description and modeling [32].

2.3.2 Challenges of CODA Approach on Microbiome Data Analysis

2.3.2.1 Normalization of Sequence Data

The simplest normalization would involve rescaling counts by the library size (i.e. the total number
of observed reads from a sample)[33]. It basically divide observed count by the library size. This
rescaling also solve the problem of uneven sequencing depth. Consider the following normalization
example for a sample with 3 genes. Eventually, calculating proportions does not transform composi-
tional counts into absolute counts.

- Gene1 Gene2 Gene3
sample 1 50 30 10

Table 3: Observed Counts. Library Size: S = 100

- Gene1 Gene2 Gene3
sample 1 0.5 0.3 0.1

Table 4: Proportions of Observed Counts. Library Size: S = 1

The methods such as EdgeR[34] and DESeq[35] tries to estimate absolute counts considering data
distribution, but they were were criticized that if counts were evaluated relative to absolute, then the
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original absolute count data was recovered after normalization. This means that closed data was con-
verted to “open” data which is not realistic since the microbiome data originally produces closed data
by its default [30].

Normalization attempt is the initial step for data analysis and the choice of normalization method even-
tually impacts the downstream analysis and so the final result. Since current normalization methods are
controversial, so avoiding normalization would seem desirable for microbiome data [30, 24]. Thus the
relative abundance of OTUs are the main data to analyze. Considering CoDA approach, working with
ratios of components led to working with logarithms of ratios since logarithms of ratios are mathemat-
ically easier to control than ratios [32]. Compositional data lives in a simplex, but Aitchison presented
that compositional data could get mapped into real space by log-ratio transformation so that Euclidean
distance become meaningful [32]. Thus, many compositional data analysis begin with transformation
instead of normalization that is suitable for microbiome data.

2.3.2.2 The problem of Zero Components

Composition components are non-negative, but zeros in composition makes statistical analysis diffi-
cult. Because of compositional data analysis relies on log-transformation, zeros may cause difficulty
in downstream data analysis [32] and lead to biased estimate of microbial diversity.

A common technique to handle zeros is to replace zeros with a small value. Another replacement
strategies is adding a fixed positive value to all components, so that zeros replaced with the fixed pos-
itive value, but of a pseudo-count addition to all components does not preserve the ratios between
components [36]. Mathematical models have been employed for replacing zeros. A model that is
based on the Dirichlet sampling procedure is developed to replace zeros [37]. Fernandez et al. [38]
introduced a bayesian multiplicative model for estimating non-zero compositions from count data.
ALDEx2[39] package available on Bioconductor uses a Dirichlet-multinomial model to infer abun-
dance from counts. zCompositions[40] R package is available dealing to estimate zero count values
using bayesian multiplicative model.

2.3.2.3 High Dimensionality

It is current practice in microbiome studies to filter out rare OTUs across all samples. The OTU

abundance threshold for filtering depends on the user choice. Filtering could help to reduce dimension
but it might not be enough for large-scale microbiome dataset.

Another commonly used approach is to use phylogenetic information of OTU. OTUs are assigned to a
taxonomic unit using reference databases so that OTUs are grouped by a taxonomic level (i.e phylum,
genus) so dimension is reduced. Most of the microbiome studies to investigate the microbial structure
of the environment, the relationships between samples, the differential abundance of microorganisms
between samples or the microbial difference after a treatment etc. have been performed using the
phylogenetic information of the samples.

On the other hand, there are three popular dimension reducing procedures in CoDA: principal compo-
nent analysis, factor analysis and subcompositional analysis.
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Principal components analysis and factor analysis are widely used dimension reduction techniques in
Euclidean space. The goal of principal component analysis is to convert possibly correlated original
variables from the data into a smaller set of linearly uncorrelated variables called principal components
[41]. The goal of factor analysis is to extract a few directions in the data, called the factors or latent
variables. Thus factor analysis and principal components reduce the data dimensionality, and therefore
aim at summarizing the multivariate information in a compact form[42]. When applying principal
component analysis and factor analysis to compositional data, it is crucial to apply an appropriate
transformation.

In compositional data, each dimension called as a "part" and groups of parts can be viewed either as a
subcomposition or as a group inside the whole composition. Subcompositional analysis is intended to
deal with parts within the group and relations with respect to other groups or parts [43]. The goal of
grouping parts is to reduce dimension to facilitate interpretation. The summation of parts, called amal-
gamation, is an easy and apparently intuitive way of grouping parts and a practical way of reducing
dimensionality [44]. But, amalgamation introduce a non-linear distortion to the data and amalgama-
tion of parts changes the original problem, thus cannot be considered as a compatible reduction of
dimension [43]. The balances are introduced as an alternative to amalgamation and balances have re-
cently become popular for the analysis and classification of microbiome compositions. The main goal
of balances is to identify a complete orthonormal basis of the simplex and to make the corresponding
coordinates directly interpretable between two groups of parts [43]. The resulting procedures provide
tools that improve interpretability and can also be used for an intuitive dimension reduction [45].
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CHAPTER 3

NETWORK INFERENCE FROM METAGENOMICS DATA

In this chapter, an overview of the microbial network inference and microbial association methods are
summarized.

3.1 Visualization of Metagenomic Data

Due to the compositional nature and the extreme sparsity of the metagenomic data, inferring asso-
ciation relationships is very challenging. One way to begin exploring such large data sets such as
microbiome data is to set up a network among data points. Network inference is being applied to
studies of microbial ecology to visualize and characterize microbial communities [46]. Graph-based
representation of metagenomic data is a promising direction for analyzing microbial interactions [47].

The first step to construct a network is searching for pairs of variables that are closely associated, then
calculating some measure of dependence for each pair, rank the pairs by their scores, examine the top-
scoring pairs and draw a network considering those pairs. However, the determination of dependency
in microbiome data is not an easy. Recent studies have demonstrated that the microbiome composition
varies across individuals due to different health and environmental conditions [48].

The compositional nature of the data complicates the investigation of the dependency structure since
there are no known multivariate distributions that are flexible enough to model such a dependency [49].
But, understanding the dependence structure among microbial units within a community, including co-
occurrence and co-exclusion relationships between microbial units might help to model the behavior
of community and may help answer many questions.

3.2 Microbial Dependency Measures

Dependency measures between between data points can be distance, similarity, dissimilarity, correla-
tion and partial correlation.

Distance metrics need to satisfy metric axioms (minimality, symmetry and triangle inequality). Dis-
similarity is similar to distance, but it does not need to satisfy triangle inequality. Dissimilarity func-
tions are usually in the range of [0,1]. Similarity is the complement of the dissimilarity measured in
the range of [0,1].

11



Using the formula, d =
√
1− s where s is similarity and d is Euclidean distance, dissimilarity value

can be converted to similarity,s. If necessary, the correlation values also can be transformed into
Euclidean distances using the same equation.

3.2.1 Correlation and Partial Correlation

Networks inference algorithms frequently use correlation. If two nodes have higher correlation more
than a pre-determined threshold, then an edge is drawn between those nodes and network is con-
structed. Partial correlation is another measure of the relationship between two continuous variables
while controlling for the effect of one or more other variables.

In order to demonstrate the network construction procedure and differences between correlation and
partial correlation, let’s generate four correlated points such as:

x1 ∼ N(0, 1), x2 ∼ N(2 ∗ x1 + 1, 1), x3 ∼ N(3 ∗ x2, 1), x4 ∼ N(0.5 ∗ x3, 1)

It is clear that the underlying network of the generated data is as in the figure 1:

X1 X2 X3 X4

Figure 1: Underlying Network of Generated Data

Calculating the pairwise correlation between points, how to link points can be determined. Choosing
threshold is crucial for network construction (see figure 2). If threshold is too high, connections might
be lost between points, or if it is too low, then extra connections which do not exist in the real network
might be seen in the network.

Figure 2: Choosing threshold is the crucial for network construction. Different thresholds creates
different connected graphs.

Using reverse thinking, determination of “not correlated nodes” can help for network construction. If
correlation is zero between two nodes, then nodes are linearly independent, hence there will be no
edge in the network graph.
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Partial correlation can be more helpful than correlation in finding uncorrelated nodes. Partial corre-
lation measures the relationship between two variables removing other variables’ effect. The partial
correlation matrix is also called precision matrix. If partial correlation between nodes is zero, then two
nodes are conditionally independent. In the network, there will be no edge between those nodes (see
figure 3).

Figure 3: Precision matrix to find out not correlated nodes.

Mathematically, the inverse covariance matrix is referred to as precision or partial correlation ma-
trix. Inverse covariance matrix is also used for network inference and it is known in the literature as
Graphical Gaussian model. Inverse covariance values yields to zero more than correlation and par-
tial correlation and choosing the optimal threshold on inverse covariance matrix might reveal the true
underlying network for data points (see figure 4).

Figure 4: Inverse covariance values yields to zero more than correlation and partial correlation and
Choosing the optimal threshold on inverse covariance matrix might lead the true underlying network.
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Methodology Underlying Metric
Correlation And Regression-Based (CREEPE and CCLasso) Correlation between pairwise similarities or incidences
REBACCA, COAT Covariance estimation on compositional data
Graphical Model Inference (Spiec-easi, Proxi) Conditional independence on compositional data
Local Similarity Analysis (LSA) Local alignment on time series
Bayesian Networks (SparCC) Multivariate probability distribution-Conditional independence
Mutual Information (CoNet, MIC) Mutual dependence between variables-Entropy

Table 5: Microbial co-association network methods

3.3 Methods for Microbial Co-occurrence

Microbial co-occurrence means that two types of microorganism like to live together and usually they
are seen together in an environment. If one microorganism has high abundance in an environment,
then other one also expected to have high abundance or versa versa.

Presence-absence or abundance data is used for prediction of microbial association networks. These
kind of problem is known as network inference in computer science and these techniques are widely
used in genomics [50].

Similarity based network inference considers similarity of two species distribution to assess the co-
occurrence patterns of two species over multiple samples. Significance of similarity assessed for all
pairwise relationships by correlation. However, it is not clear that correlation is the proper measure
of association. For example, correlations can arise between OTUs that are indirectly connected in an
ecological network [51]. Moreover, in real life, species generally depend on multiple other species,
and so pairwise relationship cannot be used model complex systems.

Regression can predict the abundance of one species from the combined abundances of other organisms
however this prediction does not always have a biological meaning [50].

Mutual information approaches are also useful for identifying non-random co-association patterns[50,
52].

For more complex relationship inference association rule mining technique can be adopted [50]. In-
ferred relationships can be represented with network graph as a node refers to a microbial unit ( otus,
genes, taxa etc.), edge and directed edge refer to relationship and its direction. These graphs can be
very complex and visualization of the also another issue. In order to model and visualize complex
relationships among microbial communities, more research need to be conducted [50].

Table 5 summaries the microbial co-association network methods and underlying metric on these meth-
ods.
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3.3.1 CCLasso

Correlation inference for Compositional data through Lasso (CCLasso) [53] uses the log ratio transfor-
mation for raw compositional data to infer the correlations among microbes through a latent variable
model.

3.3.2 REBACCA

Regularized estimation of the basis covariance based on compositional data (REBACCA) [54] is an
algorithm to identify significant co-occurrence patterns by finding sparse solutions to a system using
log ratios of count or proportion data.

3.3.3 CCREPE

CCREPE method ( Compositionality Corrected by Renormalization and Permutation ) [55] determines
the significance of association between features in a composition, using any similarity measure (e.g.
Pearson correlation, Spearman correlation, etc.). They also implemented the NC-score similarity mea-
sure between compositions derived from ecological relative abundance measurements. It calculates
Kendall’s τ on binned data instead of ranked data. In such cases, features typically represent species
abundances, and the NC-score discretized these continuous values into one of N bins before computing
a normalized similarity of co-occurrence or co-exclusion.

3.3.4 SPIEC-EASI

Sparse Inverse Covariance Estimation for Ecological Association Inference (SPIEC-EASI) is a graph-
ical model inference method for the inference of microbial ecological networks [51]. SPIEC-EASI
method aims to learn a network of pairwise taxon-taxon association from microbiome compositions.
SPIEC-EASI leveraged CoDA theory and used the centered log-ratio transform to reconstruct micro-
bial association networks and interactions. SPIEC-EASI addresses interdependence through a centered
log ratio (clr) transformation of the relative abundance data and then estimates the sparse inverse co-
variance matrix, therefore inferring association based on conditional independence. This method is
fundamentally distinct from other techniques (CCREPE) which essentially estimate pairwise correla-
tions.

3.3.5 SPARCC

Bayesian networks can capture the conditional interdependence between OTUs and can deal with
interactions within complex microbial communities. SparCC uses Bayesian estimate [46]. SparCC
estimates the linear Pearson correlations between the log-transformed components [56]. It makes
two assumptions: the number of features is large and the correlation network is sparse. The SparCC
method uses Bayesian estimates but calculates a mean value of a measure similar to the concordance
correlation coefficient [56].
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SparCC and SPIEC-EASI algorithms both assume an underlying sparse network and so are less rigor-
ous for estimating correlations in compositional data than is the calculation of phi. However, they both
offer the advantage of using a full or partial Bayesian approach, which is generally more powerful than
point-estimate based approaches [25].

3.3.6 CONET and MIC

CoNet is an ensemble based network reconstruction method that detects non-random patterns of mi-
crobial co-occurrence between OTUs by combining multiple association methodologies (such as Kull-
back–Leibler divergence, Pearson correlation and Spearman correlation as well as mutual information)
simultaneously to identify the highest scoring pairwise relationships and merges the results into a con-
sensus network structure [46].

MIC (Maximal information coefficient) is a measure of the strength of linear or nonlinear associations
between variables via mutual information. This is a nonparametric, exploratory statistical approach to
identify novel interactions from a large dataset [52]. MIC and CoNet methods, however, lack the ability
to discriminate against intuitively difficult to interpret patterns, can miss some important relationships
[57].

3.3.7 LSA

the Local Similarity Analysis (LSA) method captures local and potentially time-delayed co-occurrence
and association patterns in time series data that cannot otherwise be identified by ordinary correlation
analysis. It can be applied to identify shifts in the abundance of a target OTU in response to a change
in the composition of another OTU (or set of OTUs) or an environmental condition [58].

3.3.8 PROXI

Proxi [47] constructs a proximity graph from the abundances of microbial operational taxonomic units
(OTUs). Proxi learns a proximity graph that each node is an OTU and edges represent proximity
relationships between nodes. This tool supports three types of proximity graphs: k-nearest neighbor
(k-NN) graphs; radius-nearest neighbor (r-NN) graphs; and perturbed k-nearest neighbor (pk-NN)
graphs.

3.3.9 COAT

COmposition-Adjusted Thresholding (COAT) method [49] is to estimate the sparse covariance matrix
of the latent log-basis components. The method is based on a decomposition of the variation matrix
into a rank-2 component and a sparse component. The resulting procedure can be viewed as threshold-
ing the sample centered log-ratio covariance matrix and hence is scalable to large covariance matrix
estimations based on compositional data.
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3.4 Methods for Microbial Co-exclusion

Microbial co-exclusion means that two types of bacteria do not like to live together and usually they are
not seen together in an environment. In ideal case, one microorganism can be present in any abundance
only if the other microorganism is absent. In not ideal cases, if one microorganism has high abundance
then the other one expected to have low abundance or versa versa. Or both of them are expected to
have low abundance.

Co-exclusion is one of the most important patterns to be identified in microbial communities. Know-
ing which microorganisms are unable to tolerate each other’s presence or can replace one another
in the community opens an opportunity to manipulate and control the microbiota, guide microbiota
transplantation, and personalize the choice of microorganisms for probiotic treatments [57]. Note that
mutual exclusion/avoidance pattern is not anti-correlation (negative Pearson or Spearman correlation).

3.4.1 CO-EX

Co-Ex introduce a quantified definition of the strength and statistical significance of multidimensional
co-exclusion patterns between variables describing microbial communities [57].

Co-Ex formulates co-exclusion relationship on ideal case that is one microorganism is present in any
abundance and the other microorganism is absent. Co-exclusion represented as the functionXaXb = 0

where Xa and Xb are abundances of two microorganism. The coefficient of determination R2 is
redesigned for co-exclusion function and used to quantify goodness of fit.

3.5 Multidimensional Boolean Patterns in Microbial Communities

The microbial community members are dynamic and they are often simultaneously involved in mul-
tiple relations. Such relationships are very hard to detect using traditional correlation, mutual infor-
mation, principal coordinate analysis, or covariation-based network inference approaches. Recently,
a novel pattern-specific method to quantify the strength, and to estimate the statistical significance of
two-dimensional co-presence, co-exclusion, and one-way interaction (organism 1 was needs organism
2 to survive and vice versa) patterns between abundance profiles of two organisms are proposed [59].
The basic idea of the proposed approach is to estimate the pattern score by counting the fraction of
observations belonging to the pattern under investigation. The approach searches for Boolean patterns
in the microbial abundance data and the search is pattern specific. The result is the presence of mul-
tidimensional patterns in microbial communities and multilayer networks are used to visualize these
multidimensional patterns.

3.6 SourceTracker

Sourcetracker is a technique used to identify the ecological source of microbiomes [60]. It uses a
Bayes approach and is adopted from Latent Dirichlet Allocation which was originally used in the
natural language processing domain to identify topics of text [61]. Sourcetracker is used to identify
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the components constituting the habitats (skin, fecal, oral, soil, ocean etc.) of a microbiome. The
SourceTracker algorithm needs a OTU table (sample x OTU count matrix), and a metadata file for
samples. Samples are marked as “source” and “sink” in the metadata file and algorithm trained with
sources and tested with sinks. The approach models contamination as a mixture of entire source
communities into a sink community, where the mixing proportions are unknown [60]. The result is
the predicted proportions of source samples for each sink sample. SourceTracker considers each sink
sample x as a set of n sequences mapped to taxa, in which each sequence can be assigned to any one
of the source environments v1, . . . , Vn, including an unknown source. When part of a sink sample is
unlike any of the known sources, it gets assigned to an unknown source.

18



CHAPTER 4

COMPOSITIONAL DATA ANALYSIS

In this chapter, an overview of the basics of Compositional Data (CoDa) Analysis is summarized.

4.1 What is Compositional Data?

Compositions describe parts of a whole and carry relative information. Examples of compositional data
include anything measured as a percent or proportion [43]. The formal definition [62] is as follows:

Definition 1 Compositional Data. A row vector, x = [x1, x2,..., xD], is defined as a D-part composition
when all its components are strictly positive real numbers and they carry only relative information.

The most common examples of compositional data have a constant sum κ and it is known in literature
as closed data [63]. κmight be 1 , 100 or any number. κ is called closure constant. Sum of components
of the composition is κ.

Definition 2 Closed Data. The sample space of compositional data is the simplex, defined as

SD = x = [x1, x2, . . . , xD]suchasxi > 0, i = 1, 2, . . . .Dand

D∑
i=1

xi = 1

The closure is a projection of a point in RD on SD.

Definition 3 Closure of Data. For any vector of D real positive components

z = {z1, z2, . . . , zD} ∈ RD
+

for all i=1,2,. . . ,D).

The closure of z is defined as

C(z) = { κ.z1
D∑
i=1

zi

,
κ.z2
D∑
i=1

zi

, . . . ,
κ.zD
D∑
i=1

zi

, }
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If only some parts of the composition are needed or available, subcomposition of data needs to be
defined.

Definition 4 Subcomposition of Data. Given a composition x, a subcomposition xs with s parts is
obtained applying the closure operation to a subvector {xi1, xi2, ..., xis} of x.
Subindexes i1, ..., is tell us which parts are selected in the subcomposition, not necessarily the first s
ones.

4.1.1 Principles of Compositional Data

Aitchison [32] introduces three important principles of compositional data analysis: scale invariance,
subcompositional coherence and permutation invariance.

4.1.1.1 Principles of Scale Invariance

The principle of “scale invariance” states that compositional data only carry “relative information”.
The analysis should not depend on the closure constant κ. The difference between component values is
only meaningful proportionally [64]. For example, the difference between 100 and 200 counts carries
the same information as the difference between 1000 and 2000 counts. Thus, proportional vectors with
positive components are compositionally equivalent as composition. Nevertheless, when it comes to
interpretation of unit, the closure constant will be very important for the correct interpretation of the
units.

Definition 5 Compositionally Equivalent. Let two vectors of D positive real components x, y ∈ RD
+ .

(xi, yi > 0) for all i = (1, 2, . . . , D). x and y are compositionally equivalent if there exists a positive
scalar λ ∈ R+ such that x=λ.y and, equivalently C(x) = C(y) where C is closure function.

Only scale invariant functions can be consistently used in CoDA analysis which is defined as f(α.x) =
f(x) , where α > 0

Example: Let define a scale invariant function f as the ratio of elements by the last element of vector.
f(x) = ( xi

xD
, . . . , xD−1

xD
) where x ∈ RD

+ is a compositional vector. And let x = (1.6, 2.4, 4.0) and
y = (3.0, 4, 5, 7, 5) be two composition vectors.

f(x) = ( 1.64.0 ,
2.4
4.0 ) and f(y) = ( 3.07.5 ,

4.5
7.5 ) and f(x) = f(y) = (0.4, 0.6) so that x and y are composi-

tionally equivalent.

There are many equivalent sets of ratios which may be used for the purpose of creating meaningful
functions of compositions. For example the geometric mean of components of a composition f(x) =
x

g(x) where g(x) = (x1, . . . , xD)
1
D would also meet the scale invariant requirement [65].
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4.1.1.2 Principles of Permutation Invariance

The principle of ‘permutation invariance’ states that the ordering of components are not matter as long
as all compositions are ordered in a consistent manner [32]. Equivalent result should be obtained
when ordering of components changed in a composition. For example, calculating distance between
two composition vectors x=(1.6, 2.4, 4.0) and y = (3.0, 4,5, 7,5) does not depend on the order of
components. x’=(2.4, 4.0,1.6) and y’= (4,5, 7,5 ,3.0) have the same distance. Removing any part from
the composition is not permutation invariant since result will depend on the erased component [43].

4.1.1.3 Principles of Subcomposition coherence

The principle of subcompositional coherence states that any method used should produce consistent
results between a full composition and a subset obtained by deleting some components. For exam-
ple, the distance measured between two full compositions must be greater then the distance between
them when considering any subcomposition. Moreover, erasing a non-informative part of composition
should not change the result.

For example let S be a full composition S= (0.1, 0.2, 0.1, 0.6 ), (0.2, 0.1, 0.1, 0.6) and s= ( 0.25, 0.50,
0.25 ), (0.50, 0.25, 0.25) is a subcomposition of S. The ratio of two components si

sj
and xi

xj
remains

unchanged when transfer data from full composition to subcomposition. Thus, as long as working
with scale invariant functions, or equivalently to express all statements about composition in terms of
ratios, subcompositional coherent will be reserved [43].

4.2 Aitchison Geometry

Compositional data exist in a subspace known as the simplex, so many commonly used metrics in
Euclidean space is invalid for relative data [32].

Definition 6 Simplex. The sample space of compositional data is the simplex, defined as

SD = {x = {x1, x2, . . . , xD}|xi > 0, i = 1, 2, . . .D;

D∑
i=1

xi = κ}

The ternary diagram that is shown in the Figure 5 is the standard representation of simplex for D = 3.

Presence or absence of other components affect the distance between two composition [66]. Increasing
the abundance of one decreases the proportional abundance of the others so that representing variables
as portions of the whole makes them mutually-dependent multivariate objects and multivariate statis-
tics yield erroneous results [66].

Example: Let C1 = ([5, 65, 30], [10, 60, 30]) and C2 = ([50, 20, 30], [55, 15, 30])

Euclidean distance is the same between compositions C1 and C2 due to 5 unit difference between
first and second components. If proportions are consider, first component of C1 is doubled since first
component of C2 has a relative increase around 10 %.
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Figure 5: Ternary Diagram.

Hence, another geometry was needed to work with compositional data and Aitchison defined Aitchison
Geometry to work with relative data [32].

4.2.1 Defining Simplex as a Vector Space.

In order to calculate distance, length, norm, inner product, orthogonality etc. between compositions,
two operations were defined on simplex: perturbation and power transformation.

Definition 7 Perturbation of a Composition. Let x and y ∈ SD are two compositions. Perturbation
of x by y is defined as

x⊕ y = C{x1y1, x2y2, . . . , xDyD}.

where C is closure function.

Definition 8 Power Transformation of Composition. Let x ∈ SD is a composition and α ∈ R is a
scalar, Power transformation of x by α is defined as

α⊙ x = C{xα1 , xα2 , . . . , xαD}

where C is closure function.

Hereby, the simplex, (S,⊕,⊙) with perturbation operation and power transformation is a vector space.
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The Figure 6 shows the perturbation and power transformation effect in simplex. On the left; original
composition (*) is perturbed by p = {0.1, 0.1, 0.8} and the resulting composition (o) obtained. On the
right; original composition (*) is powered by α = 0.2 and resulting composition (o) obtained.

A
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*

*
****
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**

*
*

A

C
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*
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**
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*

B

Figure 6: Perturbation and power transformation effect in simplex.

Since, SD is a vector space then it holds commutative and associative property, neural and inverse
element properties.

(SD,⊕) has a commutative group structure, for x, y, z ∈ SD it holds

1. Commutative property: x⊕ y = y ⊕ x

2. Associative property: (x⊕ y)⊕ z = x⊕ (y ⊕ x)

3. Neural Element: n = C[1, 1, . . . , 1] = [ 1D ,
1
D , . . . ,

1
D ]

4. inverse of x : x−1 = C{x−1 1, x
−
2 1, . . . , x

−
D1} and x⊕ x−1 = n

The power transformation satisfies the properties of an external product, for x, y, z ∈ SD , α, β ∈ R it
holds:

1. Associative property: α⊙ (β ⊙ x) = (α.β)⊙ x

2. Distributive property: α⊙ (x⊕ y) = (α⊙ x)⊕ (β ⊙ y) and (α+ β)⊙ x = α.β ⊙ x

3. Neural Element: 1⊙ x = x

Definition 9 Inner Product. Let < ., . >a stands for the Aitchison inner product and x, y ∈ SD are
two compositions. Inner product of x and y is defined as
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< x, y >a=
1

2D

D∑
i=1

D∑
j=1

ln
xi
xj

ln
yi
yj

Definition 10 Norm Let ||.||a stands for the Aitchison norm and x, y ∈ SD are two compositions.
Norm of x is defined as

||x||a =

√
1

2D

D∑
i=1

D∑
j=1

(ln
xi
xj

)2

Definition 11 Distance Let da(., .) stands for the Aitchison distance and x, y ∈ SD are two composi-
tions. Distance between x and y is defined as

da(x, y) = ||x⊖ y|| =
√

1

2D

D∑
i=1

D∑
j=1

(ln
xi
xj

− ln
yi
yj

)2

4.2.2 Log Ratio Analysis: A Statistical Methodology for Compositional Data Analysis

Subcompositional coherence principle of compositional data puts conditions on how to conduct a
CoDA analysis [67]. Scale invariant functions of the composition guarantee the subcompositional
coherence [43]. Any meaningful scale-invariant function of a composition can be expressed in terms
of ratios of the components of the composition or only of log-ratios of the components [66]. Thus, it
led to working with logarithms of ratios since logarithms of ratios are mathematically easier to control
than ratios [32].

Log-contrasts are the most frequent used scale-invariant functions in CoDa analysis. A log-contrast is
a simple way of expressing a set of log-ratios in a linear form which is symmetric in the components.

Definition 12 Linear functions: log-constrasts Let x ∈ SD is a composition. A log-constrast on x is
defined as

f(x) =

D∑
i=1

αi.ln(xi),

D∑
i=1

xi = 0

Simple log ratios ln(xi/xj) is a log-contrast function. The balance function; ln( g(x1,x2,. . . xr)
g(xr+1,xr+2,. . . xs)

),
where g(.) is the geometric mean of the arguments is also a log-contrast function.

Aitchison projected the sample space of compositional data, the D-part simplex SD, to real space
RD − 1 or RD, using log-ratio transformation. The philosophy of logratio analysis can be stated
simply [68]

1. Formulate the compositional problem in terms of the components of the composition.

2. Translate this formulation into terms of the logratio vector of the composition.

3. Transform the compositional data into log ratio vectors.
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4. Analise the log ratio data by an appropriate standard multivariate statistical method.

5. Translate back into terms of the compositions the inference.

After conceiving log-ratios as coordinates in a real Euclidean space [69, 43], the idea of transforming
CoDa to the real space is irrelevant, as the coordinates fully represent compositions and this is equiv-
alent to analyzing compositions using the Aitchison geometry or to analyzing their representation in
coordinates using the ordinary Euclidean geometry [65, 67]

4.2.2.1 Additive Log Ratio (alr) Transformation

Many compositional data analysis begin with conversion of absolute data set into relative space by
dividing each element of the sample vector by the total sum. It could be possible that the two groups
of compositional data appear clearly linearly separable in absolute space, but after transformation, the
boundaries between groups might become unclear in relative space. In order to reveal group separa-
tion, dividing all or some of the features by a reference feature, one might discover that the resultant
ratios can separate the groups and any separation revealed by such ratios can be analyzed by standard
statistical techniques.

Alr transformation is achieved by taking the logarithm of each measurement within a composition as
divided by a reference feature.

Definition 13 Alr Transformation. alr : SD −→ RD−1 transformation defined by:

y = alr(x) = [ln
xi
xD

; . . . ; ln
xD−1

xD
]

Alr is a bijective transformation so the inverse of transformation alr−1 : RD−1 −→ SD is

x = alr−1(y) = C(exp(y1), exp(y2), . . . , exp(yD−1))

The result of alr transformation does not belong to the choice of the final component as reference
feature. If components were permuted, the result would not change [70]. One drawback of alr trans-
formation is being a asymmetric in the parts, it depends of the chosen reference feature.

4.2.2.2 Centered Log Ratio (clr) Transformation

In order to overcome drawback of alr and treat parts symmetrically instead of choosing one component
as reference feature, an abstract reference ; the geometric mean of the composition g(x) is used and
this transformation called centered log ratio (clr) transformation

Definition 14 Clr Transformation. clr : SD −→ RD−1 transformation defined by:

z = clr(x) = {ln xi
g(x)

; . . . ; ln
xD
g(x)

}

where g(x) is the geometric mean of the composition
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Clr is also a bijective transformation and the inverse of transformation clr−1 : UD −→ SD takes the
form

x = clr−1(z) = C[exp(z1). . . exp(zD)]

where UD = [u1. . . uD] : u1 + . . . uD = 0 a hyperplane of RD.

One drawback with clr transformation is that the sum of transformed values is 0. Clr transformation
creates a constrained vector in RD ,thus it yields a coordinate system featuring a singular covariance
matrix which is unsuitable for many common statistical models [69].

4.2.2.3 Isometric Log Ratio (ilr) Transformation

Unlike alr and clr, the isometric log-ratio bypasses of choosing any feature as divisor; instead of using
orthonormal basis for transformation [69]. The isometric log-ratio transformation (ilr) is an isometric
linear mapping between the simplex and RD which preserves distances and angles between points.

The transformation is performed by first finding an orthonormal basis for SD and transforming it into
a “contrast matrix” ψ and use it to define the ilr transformation.

Definition 15 Ilr Transformation. ilr : SD −→ RD−1 transformation defined by:

ilr(X) = clr(X)ψt

Contrast is a linear combination of variables whose coefficients add up to zero, allowing comparison
of different parts. Those coefficients can be used to construct a contrast matrix.

Isometric log ratio (ilr) transformation overcomes drawbacks of alr and clr and assign coordinates with
respect to orthonormal basis.

The ILR transform can be built from a sequential binary partition (SBP) of the original variable space.
The SBP is a hierarchy of the parts of a composition: in each step it is split into two groups so it
ensures the orthogonality. However, a known obstacle of ILR transform is the choice of partition such
that the resulting coordinates are meaningful. Details of SBP explained in Basis and Balances section.

4.2.3 Compositional Distance

Compositional data lives in a simplex so Euclidean distance between samples does not make sense
[66]. Distance for compositional data is Aitchison distance. It provides a measure of distance between
two d-dimensional compositions. Unlike Euclidean distance, Aitchison distance has scale invariance,
perturbation invariance, permutation invariance, and sub-compositional dominance properties. There
is another distance that accomplish these four properties is Mahalanobis (clr) distance.
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Definition 16 Aitchison Distance. Let x and y ∈ SD are two compositions. Aitchison distance is
defined as

da(x, y) =

√√√√ 1

2D

D∑
i=1

D∑
j=1

(
ln
xi
xj

− ln
yi
yj

)2

Aitchison distance is simply the Euclidean distance between clr-transformed compositions. In other
words, when data is clr-transformed, then Euclidean distance makes sense.

4.3 Basis and Balances

Principal component analysis (PCA) is a well-known method in statistics to transform variables into
a new set of uncorrelated variables called principal components (PC). The first PC is the linear com-
bination of the original variables which acquire the largest sample variance. Geometrically, each PC
is associated with a direction represented by a vector (also called Principal Direction (PD)) [71]. PDs
constitute an orthonormal basis of the space. The sample values of PCs, called scores, are expressed
as coordinates with respect to the PDs [71].

Remember that analyzing compositional data with traditional statistical methods, it needs to be trans-
formed to real space by alr, clr or ilr transformation functions. To calculate the basis in a simplex, basis
of RD must be transformed back to simplex.

Let (u1, u2, . . . , uD−1) is a basis of RD−1 where

u1 = [1; 0; 0; . . . ; 0; 0];u2 = [0; 1; 0; . . . ; 0; 0]; . . . ;uD−1 = [0; 0; 0; . . . ; 0; 1]

then the compositions (e1, e2, . . . , eD−1) is called compositional basis (C-basis) of SD where

e1 = alr−1(u1) = C[e; 1; . . . ; 1]; e2 = alr−1(u2) = C[1; e; 1; : . . . ; 1]; . . . eD−1 = alr−1(uD−1) = C[1; . . . ; 1; e; 1]

Thus the vector of C-coordinates of a composition x with respect to this basis is

alr(x) = [ln(x1/xD); . . . ; ln(xD−1/xD)]

But C-basis are not orthonormal since ||ei||2c = 1− (1/D) ̸= 1 and < ei, ej >c= (−1/D) ̸= 0.

The best manner of defining an orthonormal basis in SD is by the clr-coefficients of the compositions:
it suffices to ensure that the squared coefficients add up to 1; and the ordinary inner product of the
clr-coefficients, as real vectors, is 0.

The practical way of defining orthonormal basis is Sequential Binary Partition (SBP). The SBP is
a hierarchy of the parts of a composition: in each step it is split into two groups so it ensures the
orthogonality. A sign table is constructed dividing composition between groups. The idea is that the
first row of the sign table is created by splitting the composition into two groups; each of these groups
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is then split into two more groups. This process continues until each group has a single part. 1 is used
to indicate an inclusion in the first group, -1 indicates an inclusion in the second group and 0 indicates
no inclusion [72].

Sequential binary partition process and an example of sign matrix are shown in Figure 7 for D = 5.

The contrast matrix ψ is then constructed by the formula: ψij = 1
r

√
r.s
r+s , when the corresponding

value in the sign table is positive and ψij = 1
s

√
rs
r+s , when the corresponding value in the sign table

is negative in which separating parts composed of r and s parts. If the corresponding sign table value
is 0, then the value in the contrast matrix is also 0. The lower part of the Figure 7 shows the ψ matrix
of the basis.

Figure 7: Sequential Binary Partition Example

Once ψ has been found, it is easy to perform the ilr transformation. Positive components (x′js) are
taken as numerator, and negative components (x′ls) are taken as denominator and ilr coordinates are
calculated using the formula:

X∗
i =

√
ri.si
ri + si

ln
(
∏

j∈Ri
Xj)

1/ri

(
∏

l∈Si
Xl)1/si

These ilr coordinates are called as balances [43].

Definition 17 Balances. Balances are the coefficients corresponding orthogonal bases. Balances are
log-contrasts which are log-ratios of geometric means of two non-overlapping groups of parts.

b =

√
rs

r + s
ln
g(x+)

g(x−)

where x+, x− are two non-overlapping groups of parts of a composition and g(.) is the geometric
mean of the arguments.
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A positive balance means that the group of parts in the numerator has more weight in the composition
than the group in the denominator (and vise verse for negative balances). Moreover, balances can be
very useful to project compositions onto special subspaces just by retaining some balances and making
other ones null [62].

In summary, a set of orthonormal balances is easily defined using a SBP, resulting in ilr-coordinates.

4.3.1 Principle Balances

Principal balances (PBs) refer to principle components of simplex in real space. PBs are defined as a
sequence of orthonormal balances which maximize successively the explained variance in a compo-
sitional data set. Given a compositional centered sample, we define the first PB as the balance which
maximizes the explained sample variance. Subsequent principal balances, being orthogonal to the pre-
ceding ones, also maximize the explained remaining variance [71]. Similar to PCs, PBs maximize the
explained variance of a data set in decreasing order.

Computing PBs requires an exhaustive search along all possible sets of orthogonal balances. PBs
can be approximated by hierarchical clustering of compositional parts using Ward’s method and those
hierarchical clusters are used as a SBP for PBs [45]. Hierarchical clustering of components yields, by
construction, a series of balances with increasing variance. The Ward clustering method [73] merges
clusters with the most similar centroids to form a cluster. The algorithm needs a distance or similarity
measure in order to merge parts. The variation matrix can be used as a distance matrix, which is
actually a square distance matrix between parts [45, 74]. The variation matrix elements are all positive
and the variance of the log-ratio of two parts is zero if the two components are perfectly proportional.
Note that proportionality is presented by Lovell et. al. [26, 74] as a valid alternative to correlation
for relative data. When two parts xi and xj are exactly proportional, var(ln(xi/xj)) = 0, so xi and
xj are linearly associated. If the variance is large, then the proportionality of the two variables is
unreliable, and they likely belong to different groups. The Ward algorithm starts detecting the smallest
entry in the variation matrix and the corresponding parts are merged to form a group [45]. Then, the
geometric mean of both columns -the group centroid- is calculated and the variation matrix is updated.
The algorithm iteratively continues merging groups of parts according to the smallest variance of the
corresponding balance. The first principal balance, using the clustering method, includes all parts and
defines the largest variance in the data.

Definition 18 Principal Balances. Let x = x1, ..., xD be a D-part composition. Principal Balances
are log-linear functions

∑D
i=1 aki lnXi , k=1,2,...D-1 such that the vectors ak = (ak1, ak2, ..., akD)

are constant and they maximize the variance

var

[
D∑
i=1

aki lnXi

]

subject to

1. (balance condition) for k=1,2,...D-1, the coefficients aki take one of the three values (-c1,0,c2)
for some strictly positive c1 and c2.
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2. (zero sum and unit norm conditions) for k=1,2,...D-1, the coefficients ak satisfies
∑D

i=1 aki = 0.

3. (orthogonality condition) for k=2,...D-1, the coefficients ak is orthogonal to the previous ak1
, ak2

, ..., a1,
that is

∑D
i=1 akia(k − l)i = 0, l=1,2,...,k-1.

4.4 Exploratory Data Analysis of Compositional Data

4.4.1 Center, Variation Matrix and Covariance Structure of Compositional Data

To compute variance, the center of data needs to be computed first. Let X = xi = (xi1, . . . , xiD), i =

1, . . . , n be a dataset of observations of the simplex SD of size n.

Definition 19 Center. The center is defined as the geometric mean of the parts.

G = C(g1, g2, . . . , gn) with gj =
n∏

i=1

Xij
1/n

The center g also can be calculated from the arithmetic mean of the clr -transformed data or alr-
transformed data.

Dispersion in a compositional data set can be described either by the variation matrix or by the nor-
malized variation matrix originally defined by Aitchison (1986) using the log-ratio variance.

Definition 20 Variation Matrix.

T =


t11 t12 . . . t1D
t21 t22 . . . t2D
. . .

tD1 tD2 . . . tDD

 where , tij = var
(
ln(xi/xi)

)

or by the normalized variation matrix

T ∗ =


t∗11 t∗12 . . . t∗1D
t∗21 t∗22 . . . t∗2D
. . .

t∗D1 t∗D2 . . . t∗DD


where, t∗ij = var

(
1√
2
ln(xi/xi)

)
tij stands for the log-ratio of parts i and j while t∗ij stands for the normalized log-ratio of parts i and j.
Note than t∗ij = 1

2 tij and thus T ∗ = 1
2T [62]. Variation matrix is symmetric with 0 diagonal. When

the variance (tij) is null, xi and xj are strictly proportional; when it is large, proportionality is lost or
it is too noisy to be considered [74].

The total variance in a compositional data set is measured by total log-ratio variance. The total varia-
tion summarises the variation matrix T in a single quantity. Total variance is defined as 1

2D x (sum of
all elements of matrix T).
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Definition 21 Total Variance. A measure of global dispersion is the total variance.

TotalV ar[X] =
1

2D

D∑
i=1

D∑
j=1

var
(
ln
xi
xj

)
=

1

2D

D∑
i=1

D∑
j=1

tij =
1

D

D∑
i=1

D∑
j=1

t∗ij

The classic covariance calculation has negative bias to the unit sum constraint. This implies that at
least one of the covariances between xi and another component is negative. Aitchison [32] describes
covariance structure of D-part composition as set of all covariances as following:

Definition 22 Covariance Structure.

σij.kl = cov(log(xi/xj), log(xk/xl))

Two matrices can be used to describe the covariance structure of X.

1. Cov(clr(X)) = Γ = (τij) = (cov(log( xi

g(x) ), log(
xj

g(x) )) : i, j = 1, . . . , D) where g(x) is the
geometric mean of the components of X is a covariance matrix and treats parts symmetrically,
but it is singular because the sum of the each row of the matrix is 0.

2. Cov(alr(X)) =
∑

= (σij) == (cov(log( xi

XD
), log(

xj

XD
)) : i, j = 1, . . . , D is a covariance

matrix and it is non-singular but asymmetric in its treatment of parts.

4.4.2 Correlation Analysis of Compositional Data

In linear space, perfectly correlated data will follow the formula y = m.x+b, where y and x are variables,
m is the slope of the line and b is the intercept. However, in log transformed data, m becomes the slope
of the line, and b becomes a non-linear parameter [25]. When the intercept is 0, then the data is
linearly related in the normal and log space. The only difference is the changes of slopes; all lines
with the intercept 0 has the same slope 1 in log space. When the intercept is not 0, then the data in
log space lines are curved with changing intercept which means rations are changing and the lines are
not associated in log space. Moreover, correlation is not corrected by using non-parametric correlation
measures [25].

The covariance relationship has been exploited to develop algorithms for inferring correlation networks
from compositional data [51, 56, 54, 53, 28].

Sparse Correlations for Compositional data (SparCC) [56] captures the conditional interdependence
between parts and estimates the linear Pearson correlations between the log-transformed components.

Correlation inference for Compositional data through Lasso (CCLasso) [53] algorithm infers the corre-
lations among parts through a latent variable model after log ratio transformation for raw compositional
data.

31



Regularized estimation of the basis covariance based on compositional data (REBACCA) [54] algo-
rithm is to identify significant co-occurrence patterns by finding sparse solutions to a system with a
deficient rank.

SParse InversE Covariance Estimation for Ecological Association Inference (SPIEC-EASI) [51] ad-
dresses interdependence through a clr transformation of the relative abundance data and then estimates
the sparse inverse covariance matrix, therefore inferring association based on conditional indepen-
dence.

COmposition-Adjusted Thresholding (COAT) method [28] is to estimate the sparse covariance matrix
of the latent log-basis components. The method is based on a decomposition of the variation matrix
into a rank-2 component and a sparse component. The resulting procedure can be viewed as threshold-
ing the sample centered log-ratio covariance matrix and hence is scalable to large covariance matrice
estimations based on compositional data.

4.4.3 Regression Analysis of Compositional Data

In a regression analysis, compositions can serve as covariates (that is, predictors), as response vari-
ables or both. The first step in a regression analysis involving compositions, the components of the
composition are transformed to RD. Once all the variables are in RD, then a multivariate or univariate
regression analysis is performed. After a satisfactory model has been found the model can be converted
back into SD if a suitable transformation can be performed [75].

Due to the drawbacks of clr and alr explained in the section 4.2.2, ilr transformation is preferred for
compositional regression models. After transforming classical statistical models can be used on the
data. For example, after log-ratio transformation, the estimation can be made with the OLS method
and expressed in coordinates. Then, the estimated model can be expressed in the simplex using the
inverse transformation.

4.4.3.1 Case 1: Response is Real , Covariates are Compositional

A composition X can be used as predictor of a non-compositional variable W.

Wi represent some real response variable and Xi represent some compositional covariate.

Wi = α+ β(ilr(Xi)) + ϵi

β values can be obtained solving an ordinary regression problem in ilr coordinates. Ilr transformed
components can be transformed back into the simplex which results in

Wi = α+ < b,Xi >A +ϵi

where B is the composition created by performing a reverse ilr-transformation on the coefficients β.
The intercept is a and the composition parameter is b. ϵi is the error term with ϵi ∈ N(0,

∑
)
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As an example, Washburn et. al., Pinto et. al. and McDonald et. al[76, 77, 5] used otu table as
the predictor and a real variable as the response variable in order to identify otus that are strongly
associated with a given environment.

4.4.3.2 Case 2: Covariates is real , Response are compositional

A composition X can be predicted using of a non-compositional variable U.

In the model, a and b constant compositions, Xi ∈ SD compositional response variable and Ui is the
real covariate. ϵi is the error term with ϵi ∈ L(0,

∑
).

Xi = a⊕ (Ui ⊙ b)⊕ ϵi.

First the model must be transformed to RD.

ilr(Xi) = ilr(a) + Ui.ilr(b) + ϵi

with ϵi ∈ N (0,
∑

). The parameters a and b can now be estimated via standard multivariate regression.

As an example, Morton et. al. [78] used pH values to predict OTU proportions in the environment
using ordinary least-squares linear regression on balances.

4.4.3.3 Case 3: Both Covariates and Response are compositional

A composition X can be predicted using of a compositional variable Y.

The model in SD space will be
X = α⊕ (βc ⊙ Y )⊕ ϵ

The model in RD is
ilr(X) = αir + βirilr(Y )

using ilr transformation.

Once the data have been transformed to unconstrained space then normal multivariate linear modeling
techniques can be used to create a model of the data.

4.4.4 PCA for Compositional Data

Principal Component Analysis (PCA) should not get applied directly to compositional data. Instead,
PCA could be applied to clr-transformed data (resulting in an additional centering of the rows after log
transformation) [70]. When interpreting the resultant PCA, it should be considered that covariances
and correlations between features exist with respect to the geometric mean reference [79]. Relative
variation biplot reveals associations between samples and features, and can also be used to infer power
law relationships between features in an exploratory analysis [70].
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4.4.5 Biplot for Compositional Data

When analyzing and interpreting compositional data, it is important to remember that the variance in
the ratios of the underlying data is examined (not directly examining abundance). A biplot represents
simultaneously the rows (observations) and columns (parts) of the matrix X by means of a rank-2
approximation. In other words, a multidimensional dataset is projected onto two dimensions. Biplots
are based on the variance of the ratios of the parts.

Compositional biplots are generated after zero-replacement and clr transformation of the data. Singular
value decomposition (SVD) is conducted on clr-transformed data and PCs are visualized. Two types
of biplot are possible (form and covariance biplots), depending on the assignment of the singular
values to the left or right singular values of the decomposition [80]. In both the projections of one
set of points on the other approximate the centered data. The form biplot, where singular values
are assigned to the left vectors corresponding to the observations, displays approximate Euclidean
distances between the observations. The covariance biplot, where singular values are assigned to the
right vectors corresponding to the parts, displays approximate standard deviations and correlations of
the parts.

Figure 8: Ray and Link in biplot of a 5-part composition for 10 observation

Figure 8 shows a form biplot for 5-part composition for 10 observations. The length of links and rays
provide information on the relative variability in a compositional data set. The length of the links
indicates variation of log ratios. If the length is high then variation is high. Short links indicate a
constant or near constant ratio between the two linked parts. Each ray represents the variance of a log
ratio; for example the ray|0xi|2 ∼ var(log(xi/g(x))) and the link |xixj |2 ∼ var(log(xi/xj)). The
angle between links provide information on the correlation of subcompositions. If two links intersect
at M and the cos(M) ∼ 0 then, zero correlation of the two log ratios can be expected. In order words,
orthogonal links indicates independent parts in the composition.
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The distance between observations is related to their multivariate similarity of the parts as ratios. If all
components are relatively the same (ie, the ratios between all parts are identical), then two samples are
in the same location [74].

Biplots are a useful tool that provides a visual detection of not only the relationships between the
sample compositions, but also which parts are influencing the differences between them.

4.4.6 CODA Dendrogram

The CODA dendrogram is a powerful tool in order to explore a compositional dataset. It can be used
as a descriptive tool for visualizing some univariate statistics of the ilr coordinates derived from an
SBP [45]. The SBP table in the Figure 7 can be represented by dendrogram-type links between parts,
as shown in Figure 9. The leaves of the dendrogram, represented by dotted lines, correspond to the
groups of parts formed by a unique element. The vertical bars describe the groups of parts formed at
each order of partition. Vertical bars are scaled in the interval (-c,c), where c is used defined. Each
branching corresponds a ilr coordinates (balances). The location of the mean of an ilr coordinate is
determined by the intersection of the horizontal segment with the vertical segment (variance). The
sum of all vertical bars represents the total variance of the sample. A short vertical bar means that
the balance has a small variability in the sample, thus explaining only a little bit of the total variance.
Conversely, a long vertical bar implies a balance explaining a good deal of the total variance [81].

Figure 9: CoDa Dendrogram of 5-part composition
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CHAPTER 5

PRINCIPAL MICROBIOME GROUPS FOR BIOMARKER
INVESTIGATION

In this chapter, we address the problem of establishing relationship based on the microbial features
annotated with taxonomic information, where a compositional alternative to phylogenetic grouping of
microbiome data, Principal Microbial Groups (PMGs), is proposed to enable working with low-level
microbial features (OTUs or ASVs). The grouping is based only on relative abundances and it is based
on Principal Balances [71]. The usefulness of the proposed procedure in order to search for biomarker
candidates is illustrated on Cirrhosis dataset.

5.1 Introduction

High-throughput sequencing has led to an explosive growth of studies on the associations between
human microbiome and human disease. Many chronic diseases, including obesity, type 2 diabetes,
liver diseases, cancer and allergies have linked alteration in the human gut microbiome [82, 83, 84,
85, 77, 86, 87]. Microbiome profiles are typically high-dimensional and very sparse, leading to two
main problems in data analysis. The main approach to deal with these problems is to annotate con-
structed microbial features with taxonomy. The majority of microbiome studies (96.9%) used the
OTU approach to cluster reads and assign taxonomy to the clusters [83]. Agglomerating taxa by rank
of interest (phylum, genus etc.) allows summarizing microbiome abundance with a coarser resolution
in lower dimension. Genus was the most frequently used level (75.7%), followed by phylum (55.3%),
and only 16.0% of the studies focused on species level [83]. The similarities or relationships between
samples are addressed correspondingly. The higher the taxon level bacteria are collapsed into, the
lower dimensionality and sparsity one can achieve [6]. However, bacterial strains in the same tax-
onomic group have been found to vary in their relationships with the host bio-clinical parameters,
suggesting that each of them may have a distinct impact on host health [6]. Thus, correlating selected
taxa with disease can often lead to controversial results in biomarker studies. If members in a taxon
have opposite associations with the same disease, lumping them into one taxon variable will produce
degradation of the possible associations with the disease.

Researchers are interested in identifying a single taxonomic unit that may serve as a biomarker of dis-
eases using classical statistical and machine learning techniques [88, 89, 83, 86]. However, considering
the preventive or risk effects of each bacteria separately does not adequately account for the variation
in the human microbiome and it is rare for a single bacterial species to be associated with a disease
[90, 91]. Indeed, it is suggested that dysbiosis (imbalance in microbial communities) [92, 93] is likely
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to contribute to diseases [94, 95, 96]. Thus, detection of bacterial species that are out of balance has
become important in developing promising diagnostics.

Recent awareness of the compositional nature of microbiome data has led to employ the compositional
approach in microbiome studies [97, 24, 5, 98, 99, 76, 100, 101, 30, 102, 25, 103]. Relative abundances
are compositional and the relative data contains the relationships between the features of the dataset
[97, 24]. If the relative abundance of one microbial feature increases, the relative abundances of some
other microbial features must decrease, and vice versa. Pearson correlations of relative abundances
are spurious and cannot be relied upon to make coherent inferences about the relationships between
pairs of features [26, 53, 51]. There is an increasing number of publications motivating and using
the log-ratio methodology for statistical processing of microbiome [5, 76, 104, 105, 106, 107, 29,
108]. Log-ratio methodology brings a new perspective to the biomarker concept since it deals with
ratios of microbial features. So, focusing on a single species is not suitable for log-ratio methodology.
Then, the ratio of microbial features can be interpreted as positively or negatively correlated with the
disease. However, the most of the current biomarker discovery methodologies do not consider the
compositional nature of the microbiome data [109], as they assume implicitly the sample space to
be the real space endowed with the usual Euclidean geometry. On the contrary, the compositional
approach, which assumes the sample space to be the simplex endowed with the Aitchison geometry
[110], could reveal relevant microbiome markers among microbiome samples or groups of samples
(e.g., sick vs healthy) [111, 112]. Some recent biomarker discovery methodologies that consider the
compositional nature of the data usually work with agglomerated taxa by the rank of interests (phylum,
genus etc.) that might lead spurious results in biomarker studies [6].

5.1.1 Compositional Data (CODA) Approach for Microbiome Data Analysis

The main idea of CODA is to represent the original microbiome data in coordinates [110, 69] of
the simplex corresponding to the Aitchison geometry. These coordinates are, by construction, real,
and their support space is the real space endowed with the usual Euclidean geometry. These new
variables are formed by interpretable log-ratios or their linear aggregates (log-contrasts), and then one
can continue with standard statistical or machine learning processing [68, 113].

The components of a composition are called parts. Linear functions of a composition onto the real
numbers are scale invariant additive combinations of the logarithms of parts, called log-contrasts. Log-
contrasts are characterized by the fact that the weighting coefficients sum up to zero. Log-contrasts
are obvious candidates for describing the characteristics of a composition and are then used as statis-
tics from a sample. Examples of such log-contrasts are compositional principal coordinates [68] and
balances, the latter understood as log-ratios of geometric means of groups of parts [114, 43]. The inter-
pretability of log-contrasts depends on the characteristics of the combination of logs. Compositional
principal components generally involve all parts of the composition in a non-homogeneous way, thus
making its interpretation difficult. That is, they are neither simple nor sparse. Balances are a simple
class of log-contrasts, as the combination coefficients have only two values different from zero (sim-
plicity), and when the involved groups of parts are small, balances are also sparse [45]. Additionally,
orthonormal cartesian coordinates are sets of log-contrasts called isometric log-ratio (ilr/olr) coordi-
nates [69, 67]. Compositional principal components are ilr-coordinates. Alternatively, ilr coordinates
can be obtained by a sequential binary partitions (SBP) of the composition [114]. The SBP procedure
produces orthonormal coordinates which are balances. A positive balance means that the group of
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parts in the numerator has (in geometric mean) more weight in the sample than the group in the de-
nominator (and vice versa for negative balances). Note that amalgamations of parts do, in general, not
lead to log-contrasts, unless the composition is extended by a new component or components made up
of amalgamated parts.

Several microbiome studies have chosen ilr coordinates using an ad hoc SBP [91, 115]. Interpreting
the results of general, blind partitions might not be trivial. In order to choose meaningful parts for
balances, an expert opinion is necessary [43], but this is not practical for high-dimensional data.

Recently, some effort has been made to choose balances for classification or prediction purposes, defin-
ing the significant balances as those that are associated with the outcome of interest [78, 5, 116, 107].
Rivera-Pinto et. al. [5] introduced the “selbal” algorithm, which identifies the smallest number of
microbial features with the highest prediction or classification accuracy of a given response variable.
Quinn et. al. [107] introduced “discriminative balance analysis” (DBA-distal), which offers a compu-
tationally efficient way to select important 2 and 3-part balances. Distal Balance based disease predic-
tion and biomarker discovery platforms have also been introduced: GutBalance [105] and DisBalance
[104]. The most recent balance-based feature selection approach is “codacore” [116] and it finds the
sparse subset of balances that are maximally associated with the response variable. “Philr”[106] is a
different method from the above-mentioned balance selection methods with respect to SBP construc-
tion. It does not use data labels for SBP construction, but the phylogenetic tree.

Rather than building balances with geometric means of parts, amalgamation is proposed as an alter-
native to balances [44, 117], but amalgams need special care as their meaning changes under per-
turbation, for instance, when centering data. In fact, amalgamation is a non-linear operation in the
simplex endowed with the Aitchison geometry. Moreover, the amalgamation ignores the existence of
two different parts in the group. Ratios of involving parts are lost after amalgamation [43]. This is not
desirable for biomarker studies, because the association role of microbial features in the groups with
disease status is separately important.

We propose a procedure that groups microbial features attending the compositional character of the
data making use of the highest possible resolution of microbial features (OTUs). This mathemati-
cally consistent aggregation procedure collapses microbial features into units as an alternative to taxon
grouping, here called Principal Microbial Groups (PMGs), providing a coherent data analysis for the
search of biomarkers in human microbiota.

5.2 MATERIALS AND METHODS

5.3 Overview of Principal Microbial Groups

Principal Microbial Groups (PMGs) procedure creates non-overlapping OTU groups without using
taxonomy. The grouping is based only on relative abundances. Thus, microbial features in the same
group might have different taxonomy. PMGs offer the possibility of working with coarse groups of
OTUs, groups which are not present in a phylogenetic tree. PMGs can be used for facilitating the use
of high resolution microbial data in the search of biomarkers.
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While grouping, the procedure assigns each OTU to a group (PMG) such that OTUs in the group
are highly linearly associated in the Aitchison geometry [74]. Grouping of OTUs in PMGs is an
unsupervised R-mode cluster analysis and acknowledges coda methodology. The selection of non-
overlapping groups of OTUs is obtained through hierarchical clustering as used to approach principal
balances (PBs) [71]. The association between OTUs is determined using the variation matrix that
has been proven to be proportional to the square Aitchison distance between parts [74, 45]. These
associated OTUs form a PMG and each PMG is represented by the geometric mean of the relative
abundances of OTUs, thus reducing dimension of the dataset for further analysis. Note that only the
grouped OTUs play a role in each PMG dimension. Thus, it contributes to the better understanding
of dimension reduction procedure.

The overview of the PMG procedure is illustrated in Figure 10. The proposed procedure consists of
three steps: (1) Select an appropriate SBP for grouping, (2) Choose the optimal number of PMGs and
(3) Select compositional biomarkers.

5.3.1 (1) Select an appropriate SBP

Let x = (otu1, otu2, otu3, ...otuD) be a D-part compositional observation, possibly normalized to∑D
k=1 otuk = 1. The data set is then arranged in an (n,D) data matrix X. A hierarchical cluster anal-

ysis of the columns of X (OTUs) is carried out using Ward’s method. The variation matrix can be used
to define association between OTUs. Variation of parts can also be expressed in terms of the Aitchison
distance between parts, because the square root of the variation matrix is actually proportional to the
Aitchison distance between parts [45, 74]. The entries of the variation matrix are var(log(otui/otuj))
and they are all positive. The variance of the logratio of two OTUs is 0 if they are equal or if they are
perfectly proportional [26], i.e. if otui and otuj are exactly linearly associated [74]. A small variance
indicates approximate linear association. The larger the variance is, the more unreliable the propor-
tionality of the two OTUs is, and they likely belong to different groups. Thus, the variation matrix is
a natural choice of a distance for merging OTUs.

Each branching of the hierarchical clustering tree is a binary partition that divides the OTUs under the
branch into two groups. The procedure is iterated until all groups contain only one single OTU. The
number of binary divisions of a group comprising D OTUs to attain the end of the process is D − 1.
This procedure defines a SBP.

5.3.2 (2) Choose the optimal number of PMGs

Choosing the number of PMGs is critical for the future analysis because the interpretability of con-
structed balances depends on it. The aim is to get as many groups as possible with a manageable
number of OTUs in it to make use of PMG balances in the search of biomarkers. Those groups also
should explain the most of the total variance in the dataset. The explained variance of PBs can be
used to choose the optimal number of groups. PBs which explain the higher variance than the mean of
total variances are chosen to construct PMGs. The minimum number of PMGs is decided by the user.
Assume that the SBP process is stopped when the number of groups is z. Denote these groups PMGj ,
j = 1, 2, . . . , z, so that all otui are in one, and only one, PMG. The value assigned to each PMGj

is the geometric mean of the OTUs included. Alternative possibilities are discussed in supplementary
data.
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The PMGj , j = 1, 2, . . . , z form a composition y with z parts

y = (gm(PMG1), gm(PMG2), . . . , gm(PMGz)) ,

where z < D.

The new composition y can be represented by some arbitrary set of z − 1 ilr coordinates denoted y∗k,
k = 1, 2, . . . , z − 1. That is, for each number of groups z, an (n, (z − 1)) matrix of ilr coordinates
(PMG Balances) is obtained, and they are used in a logistic regression to predict the presence/absence
of the disease. Once the minimum (a) and maximum (b) number of PMGs are chosen, the best
accuracy measure (e.g. area under the ROC curve) of these logistic regressions for z = a, a+1, . . . , b

corresponds to the optimal number of PMGs-1.

5.3.3 (3) Select Compositional Biomarkers

PMG balances can be used to construct a dataset to search for microbial groups that are out of balance
depending on a factor. The reduced z-part composition y can be represented by ilr coordinates to
obtain PMG balances. If they are defined by means of an SBP, the coordinates will be balances of the
form

y∗ = K ln
(gm(PMG+

1 ), gm(PMG+
2 ), . . . , gm(PMG+

m+
))1/m+

(gm(PMG−
1 ), gm(PMG−

2 ), . . . , gm(PMG−
m−

))1/m−
,

K =

√
m+m−

m+ +m−
, m+ +m− ≤ z ,

corresponding to a partition separating the parts gm(PMG+
m+

) from those gm(PMG−
m−

), composed
of m− and m+ parts, respectively. The y∗’s are the PMG balances.

Selbal [5], codacore [116] and DBA-distal [107] are balance selection methods to find balances asso-
ciated with response. The input data for those methods can be at any level of the microbial features i.e.
phylum, genus, species or OTUs. Genus-level aggregation of microbiome data is the commonly used
procedure before starting any analysis, thus obtained balances are basically a ratio of genera. Alter-
natively, PMGs could provide a set of OTUs whose aggregated ratios are discriminative. The PMG

balances are called “compositional biomarkers.” Compositional biomarkers are in line with the recent
understanding that diseases are generally associated with a balance of discrete groups of microbial
species, as opposed to individual microbes [92, 90, 94, 107].

5.4 Dataset and Preprocessing

To illustrate the proposed procedure and to reveal the biological meaning of PMGs, we choose
a cirrhosis dataset [118] because the disease state is considered to be highly predictable by ma-
chine learning methodologies [119]. The dataset is available in the Knights Lab GitHub repository
https://github.com/knights-lab/MLRepo [120]. There are 130 cirrhosis and non-cirrhosis samples with
2145 features (OTUs). We filtered features that had less than 20 counts in at least 30% of samples,
resulting in 130 samples and 385 features. Cirrhosis samples (n=68) and non-cirrhosis samples (n=62)
were used for further analysis.
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In a microbiome dataset, each observed sample is a composition of microbial features (OTUs). Zero
values in the compositional dataset must be handled prior to any analysis, as CODA methods rely
on logarithms. The geometric bayesian multiplicative (GBM) method, implemented in the cmultRepl
function from the zCompositions package in R, is used for zero replacement [40]. As a result, a closed
dataset with no zeros was obtained. Before PMG construction, the optimal number of group has to be
determined. As explained in the section “Choose the optimal number of PMGs", 25 was chosen as the
minimum and the optimal number was determined as 27. Eventually, cirrhosis dataset was represented
with 27 PMGs.

5.4.1 Benchmark Evaluation

We evaluated PMGs with respect to two aspects: (1) PMG balances as a dimensionality reduction
method for compositional data, (2) PMG as a feature aggregation procedure that provides an alterna-
tive to taxon grouping for construction of microbial balances afterwards used for disease prediction.

First, we bench-marked PMG balances (ilr transformed PMGs) against competing dimension reduc-
tion methods designed for compositional data. This includes (i) PCA, (ii) Principal Balances [71]
and (iii) Distal balances (DBA-distal)[107]. The OTU tables and genus-level tables (OTU tables ag-
glomerated into genus level) were dimensionally reduced by each of the three methods and reduced
datasets were fed to logistic regression (LogReg). Note that PMGs are constructed only on the OTU

table, thus PMG balances were not calculated on the genus-level table. For fair comparison between
methods, the dataset was reduced to the same number of dimensions. The classification performance
of the model was assessed by AUC, the area under the receiver operating characteristic (ROC) curve
with ten-fold cross validation. Classification was performed in R using the caret package [121]. More
detailed information about benchmarking methods and how to implement them in R are available in
supplementary data.

Secondly, whether grouping OTUs as PMGs as an alternative to taxon grouping adds value in terms
of creating better balances for classification was assessed. The classification performance of balance
selection methods (selbal, codacore and DBA-distal) and selected balances on OTU table, genus-level
table and PMG table were examined.

5.4.2 Results

The cirrhosis dataset was preprocessed and a total of 27 PMGs (G1, . . . , G27) were identified, as
explained in the Material and Methods section. We show that PMG construction is an alternative
technique to taxon grouping that enables working with coarse groups of OTUs. PMGs have some
interpretation advantages in reducing dimensionality and provide balances of microbial groups that
can be used for disease prediction.

5.4.2.1 PMG Balances as Dimensionality Reduction Method

PMG balances were used as a dimensionality reduction method on OTU table for cirrhosis dataset.
PMG table with 27 groups was ilr-transformed and 26 PMG balances were obtained. Thus, the cirrho-
sis dataset was reduced to optimal dimension (26) by using different dimension reduction procedures.
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We benchmarked 26 PMG balances against competing dimensionality reduction methods designed
for compositional data: PCA, PBA, DBA-distal. LogReg was used for disease prediction. Reduced
datasets were constructed on OTU table and on genus-level table separately to compare with PMG

balances. Note that PMG balances were not calculated on the genus-level table, they are constructed
only on the OTU table for Figure 11. Because, PMGs are designed for grouping OTUs as an alter-
native to taxon aggregation. The classification performance of the reduced tables (26 dimensions) was
reported (supplementary Table 8 and Figure 11-A). Figure 11-B and 2-C show the LogReg classifica-
tion performances change with the dimension on the reduced datasets obtained by different methods.
PMG balances exhibited performance rivaling common dimension reduction methods for composi-
tional data.

PMG balances will not outperform other dimension reduction methods. However, PMG balances
have an interpretation advantage compared to other dimension reduction methods. Reducing a dataset
by PMG balances creates a ratio of non-overlapping groups and only the grouped OTUs play a role
in each PMG dimension. Compared to PCA, each principal component generally involve all parts of
the composition in a non-homogeneous way, thus making its interpretation difficult. Moreover, PMG

balances offer the possibility of working with coarse groups of OTUs, groups which are not present
in a phylogenetic tree. It is assumed that the microbial OTUs related to a given phenotype can be
mixed up within coarser units like phylum or genus, leading to degradation of possible associations
[6]. Alternatively, representing data by PMGs, one can obtain balances with richer high resolution
microbial features that could prevent mixed up associations resulting of taxon aggregation. As a result,
PMGs contribute a better understanding of dimension reduction procedures.

5.4.2.2 PMGs as Feature Aggregation Procedure

PMG is an alternative way of grouping OTUs for microbiome research. Whether grouping OTUs
as PMGs adds value in terms of creating better balances compared to OTUs and genus level data
was assessed. The dataset was redesigned by different data types (OTU table, genus-level table and
PMG table) and they were fed to balance selection methods (selbal, codacore and DBA-distal). The
classification performance of methods and discriminatory power of the selected balances on different
data types were examined. Selbal and codacore have a cross-validation procedure in their model and
they return an AUC value for discriminatory power of the selected balances. PMG table exhibited
performance rivaling OTU and genus-level tables on selbal and codacore algorithms (supplementary
Table 10 and Figure 12-A). Selbal selects a global balance and the performance of the global balance
was reported in the Figure 12-A. PMGs provided a small performance boost for selbal. The reason
could be that PMGs combined OTUs that have similar discriminative role. The OTU content of selbal
selected PMG balance examined in the section “PMG Balances as Biomarker Candidates". The OTU

content of PMGs are consistent with the literature findings in term of association with disease (Figure
13-D). A further study is needed for detailed examination.

Unlike selbal and codacore, DBA-distal method returns a dataset that consists of many balances with
2 or 3 parts (distal balances) on the inputted dataset. OTU table, genus-level table and PMG table
were fed to DBA-distal method. LogReg performances (AUC) of the distal balances on three different
data types were compared. DBA-distal method selects 15 PMG balances, 56 genera balances and 199
OTU balances on the cirrhosis dataset, for fair comparison, the most discriminative 15 distal balances
are included in LogReg classification (Figure 12-B). Distal OTU balances have higher AUC values
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than distal genus and PMG balances. On the other hand, distal PMG balances exhibited performance
rivaling distal genus balances, noting that genus level is commonly used grouping procedure for high
dimensional microbiome data. OTUs are the highest possible resolution of microbial features and the
possible associations are more clear on OTU-level data. Grouped OTUs (as genus or PMGs) will
be less sparse, thus grouping could cause to degradation of possible associations. PMGs result in a
different grouping of OTUs than phylogenetic grouping, and new latent functional features related
with disease could be inferred. On the contrary of genus-level table, working with PMGs, one can
obtain balances with richer high-level microbial features as biomarker candidates. Figure 13 shows
the microbial content of selected balances on different data types. They have overlapping features. It
is noticeable that most of the selected taxa by any balance selection methods are already included in
PMGs (specified in italic in white boxes). Moreover, the microbial content of PMGs is consistent with
the literature in terms of association with disease such as microbes enriched or diminished in cirrhosis
patient. PMG balances can be used to enhance existing microbiota analysis pipelines as well as they
can be used as a new source in the search of biomarkers.

5.4.2.3 PMG Balances as Biomarker Candidates

The selected PMG balances by balance selection methods are called compositional biomarkers. Com-
positional biomarkers are in line with the recent understanding that diseases are generally associated
with a ratio of discrete groups of microbial species, as opposed to individual microbes [92, 90, 94, 107].
The microbial content of the selected balances on different data types was examined with respect to
association with disease mentioned in the literature.

Selected balance by selbal on OTU table was (Veil.parvula, Mega.micro.)/Bac.uni. After PMG con-
struction, selbal selected the balance of G26/G14 (global balance). G26 has seven unique species
that are Veil.parvula and Mega.micro. as well as Fus.nucleatum, Fus.periodonticum, Camp.-concisus,
St.mutans, St.anginosus. Of these, St.anginosus, Camp.concisus and Veil.parvula are specifically men-
tioned in the literature as cirrhosis related species [119, 118]. Fusobacterium is considered to be asso-
ciated with cirrhosis at genus level, however the aforementioned Fusobacterium species have not been
specifically mentioned in the literature. In contrast with G26, G14 has nineteen unique species be-
longing to Bacteroides, Odoribacter, Parabacteroides, Coprobacter and Barnesiella genera. Of these,
Bacteroides is specifically mentioned in the literature as the dominant genus in both cirrhosis and non-
cirrhosis groups, but significantly diminished in the liver cirrhosis group [119, 118, 87]. Odoribacter
and Parabacteroides are also mentioned as diminished genera in cirrhosis individuals [118]. To the best
of our knowledge, Coprobacter and Barnesiella genera in G14 have not been specifically mentioned in
the cirrhosis biomarker literature, but the Porphyromonadaceaa that is the family of Coprobacter and
Barnesiella genera is mentioned as diminished in patients [122]. Overall, G26 includes species mostly
related to, i.e. enriched, in patients with cirrhosis, whereas G14 includes species that are diminished in
cirrhosis patients. Since the balance of G26/G14 is discriminant between diseased and non-diseased
samples, balance of those species should be one of the priorities for future therapies to prevent and
treat cirrhosis. On the other hand, selbal selects the balance of Megasphaera/Unc.Erysip genera on
genus-level table. Megasphaera is mentioned as cirrhosis enriched taxa [118, 119], but Unc.Erysip
has not been mentioned in the literature.

Selected balance by codacore on OTU table was (Lac.saliva., Megas.-micro.)/(Adler.equ., Alis.indis).
After PMG construction, codacore selects the balance of (G26,G3)/G23 on PMG table. G3 has five
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unique species from Lactobacillus genus. Lactobacillus is mentioned in the literature as the genus
that increases in cirrhosis patients, specifically Lac.salivarius species [118]. In contrast with G3 and
G26, G23 has seven unique species from Ruminococcus, Ruminiclostridium, Oscillibacter, Alistipes,
Adlercreutzia, Anaeromassilibacillus genera. Of these, Ruminococcus, Oscillibacter and Alistipes are
mentioned as the phyla diminished in cirrhosis patients [118]. Other listed genera are associated at
higher level such as phylum and family. Similar to the selbal selected balance, G26 and G3 include
species that are mostly enriched in cirrhosis patients, whereas G23 has species that are mostly di-
minished in cirrhosis patients. The balance of (G26,G3)/G23 might be another important biomarker
candidate for future therapies to prevent and treat cirrhosis. On the other hand, codacore selects a
balance of (Lactobacillus, Megasphaera, Veillonella, Rodentibacter)/(Adlercreutzia, Romboutsia) on
genus-level table. Among them, Rodentibacter and Romboutsia have not been mentioned in the liter-
ature and Adlercreutzia has only been mentioned at phylum level.

The selected genera balances are not well supported by literature, whereas the microbial content of
the selected PMG balances are consistent with the literature on species level or on higher taxonomic
level. Thus, it can be concluded that the reliability of the selected genera balances is controversial [6].

Compositional Biomarker. Selected PMG balances by balance selection methods be defined as
compositional biomarkers. Selbal and codacore methods select a single balance, whereas DBA-distal
selects many balances with 2 or 3 parts. The box plots at the bottom of Figure 10-C show the PMGs
that constitute the balances selected by selbal and codacore on cirrhosis dataset. They can be directly
interpreted as an important ratio of groups of microbial features that are highly discriminatory be-
tween cirrhosis and non-cirrhosis individuals. DBA-distal method selected 15 distal PMG balances.
It is noticeable that PMG balances together selected by selbal and codacore were the most two dis-
criminative distal PMG balances on cirrhosis dataset. Prediction power of balance combinations was
tested by LogReg. The classification performance of two PMG balances together selected by selbal
and codacore is higher than separately tested balances. The classification performance of the most
three discriminative distal PMG balances is the best as can be seen in Table 6. Moreover, the PMGs
included in the compositional biomarker explain the most of the total variance covered by all PMGs.
Figure 14 shows the compositional form biplot of PMGs included in compositional biomarkers on the
cirrhosis dataset. Explained variance is %89.5 of the total variance retained by the 6 selected PMGs.

Table 6: Classification performances of PMG balance combinations selected by balance selection
methods.

Method Compositional Biomarkers AUC

Selbal (G26/G14) 0.91
Codacore (G3,G26)/G23 0.90
DBA-Distal (2 balance) (G26/G14)

(G3/G26)/G23 0.92
DBA-Distal (3 balance) (G26/G14)

(G3/G23)
(G27/G24) 0.93
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5.4.2.4 CODA Dendrogram to Discover Discriminatory Power of the Balances

The CODA dendrogram is a powerful tool to explore a compositional dataset. The aim of the CODA
dendrogram is to represent most of the information contained in the SBP in a comprehensive plot
[81, 123, 124]. Figure 15-A shows a list of species mentioned in the literature as associated with
cirrhosis and non-cirrhosis samples and in which PMGs those species are located. In Figure 15-B, the
CODA dendrogram of PMGs is presented. Red and green horizontal bars represent the cirrhosis and
non-cirrhosis samples, respectively. The length of each colored horizontal bar is proportional to the
balance contribution to the total variance of the sample. The discriminatory power of each balance can
be visually seen in the dendrogram. The first balance has almost double variance in cirrhosis patients
than in non-cirrhosis patients. Reviewing literature about taxa associated with cirrhosis, cirrhosis
related genera are all placed in PMGs located at the bottom of the coda dendrogram, whereas non-
cirrhosis related genera are all placed in PMGs located on the upper side of the coda dendrogram.

The location of PMGs included in compositional biomarkers on the CODA dendrogram reveals the
discriminative property of selected balances. The numerator groups (G3, G26, G27) include bacteria
that have been mostly associated with cirrhosis and lie on the upper part of the dendrogram, whereas the
denominator (G14, G23, G24) groups include bacteria that are enriched in non-cirrhosis (diminished
in cirrhosis) and lie at the bottom of the dendrogram.

The members of PMGs are consistent with the literature in terms of association with cirrhosis disease.
However, we can make inferences using the CODA dendrogram on association of species that are not
previously reported with cirrhosis in the literature. For example, Campylobacter and Veillonella are
two cirrhosis related genera mentioned in the literature. The cirrhosis dataset has two species that
belong to Campylobacter: Camp.concisus and Camp.coli. Camp.concisus is a cirrhosis associated
species specifically mentioned in the literature [118], and is located in G26. There is not any finding
about Cam.coli specifically in the literature that we are aware of and it is located in G24. Since G24
lies at the bottom of the CODA dendrogram, there is a high probability that Camp.coli should not be
strongly enriched, relative to the other species, in cirrhosis. Similarly, the cirrhosis dataset has two
species that belong to Veillonella: Veil.parvula and Veil.seminalis. Veil.parvula is a cirrhosis associ-
ated species specifically mentioned in the literature [119] and is located in G26, whereas Veil.seminalis,
which is not mentioned specifically in the cirrhosis literature, lies in G17 and each group is laying on
different sides of the CODA dendrogram. Since G17 lies at the bottom of the CODA dendrogram, there
is a high probability that Veil.seminalis should not be strongly enriched with respect to Veil.parvula
in cirrhosis. Streptococcus is another genus strongly associated with cirrhosis in the literature. In the
CODA dendrogram, all species belonging to the Streptococcus genus were located in three PMGs:
G11, G26 and G27. Two of 22 species belong to G11, which lies at the bottom of the CODA den-
drogram. The remaining 20 out of the 22 species belong to G26 and G27 laying on the upper side
of the CODA dendrogram. S. anginosus, S. parasanguinis and S. salivarius species are specifically
mentioned in the literature as enriched in cirrhosis patient [119, 118]. S. anginosus is located in G26
and S. parasanguinis and S. salivarius are located in G27. Streptococcus species in G26 and G27 have
high potential to be relatively enriched in cirrhosis, whereas species in G11 have a high potential of
being relatively diminished in cirrhosis samples.

It is important to note that the balance of species is the key aspect to take into account, not the individ-
ual species. It is because focusing on a single bacteria and trying to find association with the classical
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statistical and machine learning techniques might detect some species that might be delusively associ-
ated with disease since the correlation of relative abundances is unreliable.

5.5 Discussion and Conclusion

Recognising microbiome datasets as compositional data leads researchers to utilize log-ratio method-
ology that brings a new perspective to biomarker research. Instead of focusing on a single or a group
of microbial features assumed to be associated with a disease, focus is placed on ratios of microbial
features - balances of species - and shall be one of the priorities for future therapies to prevent and treat
diseases.

However, a known obstacle in the construction of balances is the choice of partition such that the
resulting balances are meaningful. Some effort has been made to choose balances for classification or
prediction purposes, defining the significant balances that are associated with the outcome of interest
[107, 116, 5]. Philr [106] is another study that define balances utilizing phylogenetic tree. Phylogenetic
agglomerated data might not be suitable for biomarker research since the microbial OTUs related to a
given phenotype can be mixed up within coarser units like phylum or genus [6].

In this study, we introduce a novel SBP methodology utilizing principal balances that naturally groups
microbial features based only on relative abundances making use of the highest possible resolution
of microbial features. It offers the possibility of working with coarse group of OTUs, which are not
present in a phylogenetic tree. Each PMG could contain species from different genera so that the
constructed balances based on PMGs have a unique microbial characterization. Figure 16 shows the
frequencies of genera represented in each PMG. There are cases in which many genera participate in
one PMG and conversely there are PMGs that contain exclusively OTUs coming from a single genus.

Filtering options and the number of PMGs constructed on OTU table could change the members of
PMGs. Even though the number of OTUs change in each PMG with the total number of PMGs, core
OTUs usually lie in the selected discriminative PMG balances. The construction of a different number
of PMGs will not affect the core species composition in the groups dramatically, but will change their
density. The stability of PMGs has been assessed under re-sampling and changing the sample size
(similar to subsampling). The discussion about the stability of PMGs is available in supplementary
data. The conclusion is that construction of PMGs are quite stable.

PMG balances have an interpretation advantage compared to other dimension reduction methods.
Reducing a dataset by PMG balances creates a ratio of non-overlapping OTU groups. Comparing
to PCA dimension reduction, only the grouped OTUs play a role in each PMG dimension, but each
principal component does not create a discrete groups of OTU, thus making its interpretation difficult.

The important PMG balances are determined using discriminative balance selection methods: selbal,
codacore and DBA-distal. The results show that the PMG balances selected by those methods (com-
positional biomarkers) are highly discriminatory for the cirrhosis dataset. The content of balances are
reliable since they include microbial features supported by literature. Combination of selected bal-
ances increases the classification performance for predicting cirrhosis. A set of the most informative
distal PMG balances has a potential to be a set of strong biomarker candidates.
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The proposed mathematically consistent aggregation procedure collapses OTUs into PMGs as a new
alternative to taxon grouping and provides a possibility of working with high resolution microbial
features. PMGs overcome the high dimensionality problem of analyzing microbiome data. PMG

balances provide a coherent data analysis in the search of biomarkers and have a potential to identify
biomarkers candidates. Extra Materials are available in Appendix A.

5.6 Key Points

• High dimensionality, sparsity, and the compositional character of microbiome data present sta-
tistical challenges on the way of translating research to clinical practice. Recently, the use of the
log-ratio methodology developed for compositional data to process statistically the microbiome
has been shown to be a successful option for biomarker research.

• Taxon grouping of microbiome data and inferences based on genera level, or the attempt to
identify a single bacterial species associated with a disease, are up to now the main techniques for
biomarker studies. As an alternative to taxon grouping, PMGs offer the possibility of working
with coarse groups of OTUs, groups which are not present in a phylogenetic tree. PMGs can
contain species from different genera so that constructed PMG balances have a unique microbial
characterization other than phylogenetic agglomeration.

• Reducing dimensionality of the data by PMGs contributes to the better understanding of di-
mension reduction procedures. PMG balances creates a ratio of non-overlapping OTU groups
and only the grouped OTUs play a role in each PMG dimension. Representing data by PMGs,
one can obtain balances with richer high resolution microbial features. Discriminative balance
selection methods can be used to determine important PMG balances, termed “compositional
biomarkers." Compositional biomarker can be directly interpreted as an important ratio of two
groups of microbial features that are discriminatory between health status. PMG balances can
be used to enhance existing microbiota analysis pipelines as well as they can be used as a new
source in the search of biomarkers.

• A cirrhosis dataset has been analyzed as a demo to illustrate how PMG balances work. Most
PMG members of the compositional biomarkers selected by balance selection methods are in-
dividually consistent with the literature in terms of association with disease. We strongly em-
phasize that researchers should focus on compositional biomarkers, preferably represented by
balances, to develop promising therapies.
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CHAPTER 6

PRINCIPAL MICROBIAL GROUPS FOR MICROBIAL
TRANSMISSION

Gaining insights on the ecology of indoor microbiota is the first step towards understanding poten-
tial relationships with health outcomes. Built environment microbiome analysis may help tracking
in biothreats and diseases, and so developing early warning systems. Recently, there has been ongo-
ing research, developing knowledge and techniques to reveal environmental microbial transmission
mechanisms and microbial transmission networks [125, 126, 127, 128]. This chapter focuses on the
microbial transmission mechanisms in a hospital environment. An experiment was conducted in the
Erciyes University Hospital for this purposes, and swab samples were gathered from the Intensive Care
Unit (ICU) to construct microbiome profiles. Microbial transmission is carried out between objects,
so it is naturally expected that resulting microbiome profiles of samples should have similar microbial
structure. To track the contamination between samples, not taxonomic changes but rather OTU/ASV
abundance changes between samples need to be investigated. Principal Microbial Groups procedure
was applied to microbial transmission dataset in order to analyze the contagion between samples.

6.1 Introduction

In the developed world, people’s natural ecosystem has been restricted to the built environment, an
average of 90 % of our lives takes place indoors. We live in a highly interconnected world, not only
with living things, but also everything surrounding us. The last 10 years, built environments have been
considered not only habitats for humans; but also for diverse microbes and we live with microorgan-
isms that can have direct or indirect effects on the quality of our living spaces, health, and well-being
in the buildings [129]. Modern buildings are equipped with surfaces and environmental systems de-
signed to reduce the potential for microbial life to flourish. This fundamental shift in our lifestyle is
likely impacting on the development and function of our immune systems in ways that we are only
beginning to understand [130] .

We have witnessed an explosion of technologies and informatics pipelines including DNA sequencing-
based approaches to study and explore these microbial communities in-depth living in buildings and
the overall built environment. These investigations have facilitated understanding microbes that sur-
round us in our daily lives and their impacts on our lives. The emergence of the “microbiology of the
built environment” field has required bridging disciplines, including microbiology, ecology, building
science, architecture, and engineering [129]. The main aim of this emerging field is to understand the
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sources of microbes in built environment and estimating the structure the distributions and abundances
of microbes within buildings.

Inanimate environments can be considered as a potential utility for identifying and tracking bacterial
diversity. Research results indicate that people, animals, plants, outdoor air communities are the major
microbial source for indoor microbiome. Moreover, ventilation strategies are also one of the important
factors for understanding result of research on microbial community dynamics in the built environment
[131, 132]. Another study reveals that working with crops or animals influence the microbiota inside
homes [133].

Various microbiome studies revealed that microbial communities not only have relationship among
them but also very strong relationship with the environmental characteristic and geographical loca-
tions. Studies in different counties revealed that every environment and surfaces have their own char-
acteristic microbial communities and it is not randomly colonized [134]. Analysis of metagenomics
data obtained from different biogeographic sites in different time periods show that similar microbiome
communities are grouped with high probability in the same biogeography [135]. There are efforts on
public health using built environment studies such as sampling public subways in different cities all
over the world. Researchers sequence DNA from surfaces in the subways, determine the microbial
diversity and microbial sources. Their aim is to develop a "pathogen map" of a city [136].

Microbiome studies also change the definition of sterilized surfaces. Research investigating surfaces
for biological diversity revealed that many surfaces known as sterilized actually are not sterilized,
some characteristic microbiome colonization had identified [137, 138, 139, 140, 141]. In an ICU
biodiversity study, the presence of the species belonging 15 different phyla of bacteria were reported
using 16s rRNA sequencing [142]. Next generation sequencing analysis of samples from ICU showed
that nosocomial agents are found together with commensal bacteria in the environment on inanimate
surfaces [143]. Surface to surface transmission of microbes depends on the characteristics of the
microbes and the surface itself [127]. Commonly touched objects are potential hotspots which can
facilitate the exchange of microbes during direct hand contact [127].

Machine learning and pattern recognition techniques were applied to microbiome studies to determine
the hidden rules underlying microbial structure. For example, pattern reorganization techniques were
successfully utilized for the studies such as comparing finger microbiomes and computer keyboard
microbiomes to identify who touched which keyboard [144]; analyzing swabs taken from different
shoes and room floors to identify who was in which room [145].

Built environment analysis may help in tracking biothreats and diseases and so developing early warn-
ing systems. Understanding the determinants of the indoor microbiota is the first step toward under-
standing potential relationships with health outcomes.

6.2 Nosocomial Infections and Indoor Microbiome

The significance of the indoor microbiome has been critical during the COVID pandemic. How long a
virus can survive in the air or on surfaces is a key question. It is well known that contaminated surfaces
are the significant vectors in the transmission of the infection both in hospitals and in the community
[146, 147, 148].
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Nosocomial infections are a worldwide health problem and one of the major sources of morbidity
and mortality. Especially, outbreaks of Multi Drug Resistant (MDR) pathogens within Intensive Care
Units (ICUs) constitute a grand healthcare threat on immune supressed patients. An important strategy
for the control of hospital infections is to prevent pathogen transmission in the hospital environment.
Transmission of microorganisms from reservoirs within the built environment to human occupants has
been historically studied focusing on pathogens; however, communities of microorganisms can spread
through the interaction of their carriers (e. g., air and surfaces) [128].

the ICU is a closed environment and has its own microbiome community. Drifting microbiome habitats
from one point to another may cause infection. Hewit et al. [143] sampled two Neonatal Intensive
Care Units (NICU) and analyzed the bacterial diversity. Their findings provided evidence that NICU
inanimated hospital environments harbor a high diversity of human-associated bacteria. So, inanimated
hospital environments can be considered as the potential utility for identifying and tracking bacterial
diversity. It was reported that patient follow-up folders were contaminated with around 63% - 83%
percent pathogens [149]. Another study reported important resistant pathogens were isolated from
sampled objects such as automated censored sinks, stethoscope, computer keyboard, pen, folders and
watch etc. [150, 151, 152]. Another study shows that microbes in hospital water can also cause
nosocomial infections [131]. These studies support that the source of infections in ICU are sourced in
objects in the ICU unit and infection might be caused by environmental transmission.

6.3 Microbial Transmission Modelling

Microbiome studies in the literature have been focused on two main aims: (1) to divulge any global
association between microbiome data and phenotype of interest; (2) to specify the microbial feature in
the data that are related with outcome. [5]. Recently, research has started developing knowledge and
techniques to reveal environmental microbial transmission mechanisms and microbial transmission
networks [125, 126, 127, 128].

6.3.0.1 How to Define Microbial Transmission ?

It is plausible to consider the microbial transmission problem to be similar to the problem of deter-
mining the differentially abundant OTUs between samples. It could be hypothetically assumed that
if there is not a transmission event between a pair of sampled environments, then their compositions
should differ at relatively significant extend. However, in practise, this assumption might not hold
for microbial transmission in built environment problems. This is due to the fact that, as revealed by
various microbiome studies, microbial communities not only have transmissional relationships among
them but also are shaped dominantly by the environmental characteristics [1]. Each physical surface
in built environments has its own characteristic microbial community, and it is not randomly colonized
but shaped by certain ecological drivers [134]. In accordance with the literature, it could be assumed
that the objects in the same indoor environment should have similar microbial composition structure.
For any microbial transmission experiment objects in an indoor environment, objects are supposed to
have similar structure before any contamination, since they were located in the same environment and
it makes it possible to track contagion among objects.

59



The first step of microbiome data analysis is sample sequencing and the construction of OTUs. Mi-
crobiome data consists of the relative abundances of the observed OTU counts. Each OTU vector is
an abundance vector and it is the only data used to decide microbial transfer.

There are two possible ways of describing “contagion” or “microbial transfer” between two objects:

1. Source object has the same OTUs as the target object before contagion. Contagion occurs. Then
both source and target objects have that OTU, but only abundance levels of OTUs change;
source sample might have lower or higher OTU abundance than before.

2. Source object has at least one different OTU from the target object before contagion. Contagion
occurs. It is supposed that the OTU is transferred to target object and target object has lower
OTU abundance than source object. Eventually both source and target object have that OTU.

In a realistic scenario, it is not possible to know the microbiome of each object before contagion. If
the previous microbiome of object before contagion is not known, it is not possible to be sure whether
an OTU was present there before contagion or it had transferred from source object. But, we could
infer that if there is a contagion between two objects, they both must have shared OTUs.

The general approach taken for most of the microbiome studies is summarizing microbial abundance
by agglomerating taxa to any rank however, taxonomic changes do not help in understanding the
transmission patterns. For this, changes in OTU abundance, rather than taxonomic changes, between
samples need to be investigated. The total number of OTUs in any microbiome study are generally vast
and the investigation of abundance changes on OTUs individually is intractable. This is not only due to
the large number of OTUs, but also because it is only possible to measure relative abundances, and an
apparent increase of the relative abundance can be due to an increase in the abundance of the OTU in
consideration, or to a decrease in the abundances of the other OTUs in the sample. On the other hand,
if microbial transmission is carried out between objects, it is expected that resulting samples ought to
have similar microbial structures. In this case, not taxonomic changes but OTU abundance difference
between samples need to be investigated. OTUs that play a role in the transmission, therefore, should
be determined.

Grouping correlated OTUs can help to reduce dimensionality and make it possible to investigate abun-
dance differences on groups of OTUs. Principal Microbial Groups (PMGs) can be utilized for this
purposes.

6.4 Controlled Experiment

6.4.1 Sampling

A controlled experiment conducted in Erciyes University Hospital and swab samples gathered from
an Intense Care Unit (ICU) to construct microbiome profiles. 25 objects that were used in daily rou-
tine by doctors and ICU personnel were determined in the ICU. One person conducted the contagion
experiment and she touched each object in a predetermined order one by one at least for 45 seconds.
After the touches, objects were sampled. Swab samples were gathered from the contamination points
of objects. Some objects contaminated couple times in the experiment and sampled more than once.
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So, a total of 29 swab samples were collected out of 25 objects. Figure 17 shows the experiment path,
list of objects, and their respective locations. Object 1 was sampled three times as S1, S2 and S13.
Object 10 was sampled twice as S10 and S16. Object 4 was sampled twice as S4 and S17.

6.4.2 DNA isolation

DNA isolation and 16S rRNA gene amplification analysis performed for gathered samples after con-
tamination. For Total microbial DNA isolation, MoBio PowerSoil DNA Isolation Kits (Mobio Labora-
tory) was used and was carried out as specified in the manufacturer’s procedure (http://www.mobio.com-
/files/protocol/12888.pdf). In preparation for DNA isolation, cotton samples taken from swab samples
were vortexed for 30-40 seconds in 5mL MoBio lysis buffer to be removed from the strip with a sterile
scalpel. After mixing and after centrifugation at 1500 rcf for 5 minutes, supernatant were removed and
the cotton which had collapsed to the bottom was taken to MoBio Garnet Bead tubes containing 750ul
MoBio buffer. After these tubes were treated at 65 °C and 10 °C for 10 minutes, the horizontal blended
MoBio vortex adapter was treated with DNA extractions with the kit for 2 minutes at the highest speed
[153]. If extraction was not carried out immediately, the mixture was stored at −80 °C. Quantification
of double stranded DNA (dsDNA) quantities of DNA samples between 1.8-2.0 purity isolated from
the kit were performed using the Qubit dsDNA BR assay kit in the Qubit fluorimetric system (Qubit
fluorimetric, Life Technology). Total bacterial DNA obtained after extraction was stored at −20 °C
until use.

6.4.3 16S rRNA Polymerase Chain Reaction and Sequencing

16S Ribosomal RNA sequencing studies were performed on the Illumina MiSeq system and all pre-
sequencing had been performed in accordance with the protocols of the device (16S Metagenomic
Sequencing Library Preparation Preparing 16S Ribosomal RNA Gene Amplicons for the Illumina
MiSeq System). In this study, 16S r RNA gene amplification were performed targeting V3-V4 re-
gions. The Hotstar Master Mix (5Prime) was used for the polymerase chain reaction (PCR). Primers
that were expected to form single amplicons of about 460 bp in the PCR and to which overhang
adapters appropriate to the Illumina MiSeq system was used. Primers that were expected to form
single amplicons of about 460 bp in the PCR and to which overhang adapters appropriate to the
Illumina MiSeq system was added used. Forward 5’TCGTCGGCAGCGTCAGATGTGTATAAGA-
GACAGCCTACGGGNGGCWGCAG3’, Reverse 5’GTCTCGTGGGCTCGGAGATGTGTATAAGA-
GACAGGACTACHVGGGTATCTAATCC3’ primers were used.

The reaction was preincubated in a 96-well thermocycler, with final primer concentrations of 0.2 µ M,
for 3 minutes at 95 °C in a total of 50 L reaction mixture; 25 cycles of denaturation at 95 °C for 30
seconds, 30 seconds at 55 °C and 30 seconds at 72 °C, and final extension for 5 minutes at 72 °C. The
PCR products obtained after the amplification purified using AMPure XP beads (Beckman Coulter).
The purified amplicons were used as templates in the Index PCR. The index PCR was be performed
in accordance with the company protocol using the Nextera XT Index Kit. Index PCR products were
cleaned using AMPure XP beads and the clean amplicons obtained were used to create libraries. The
PhiX Control V3 Kit were used as a positive control when creating the Amplicon library.

Rarefaction is a technique to assess species richness from the results of sampling. A rarefaction curve
which shows the change in the alpha diversity measure as the number of sample increases. If the curve
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Figure 18: Rarefaction curve

converges to a horizontal asymptote, this indicates that further more reads will have little or no effect
on the diversity [22]. The figure 18 shows the rarefaction curve for the 29 samples in the experiment.

6.4.4 Otu Picking

DADA2 (Divisive Amplicon Denoising Algorithm) was used for OTU table construction [18]. DADA2
enables a complete pipeline that produces merged, denoised, chimera-free sequence variants and OTU

abundance matrix. A total of 2950 OTUs were constructed.

6.4.5 Preprocessing Data

It is assumed that if there is a microbial transmission (contagion) between two objects, they both
should have shared OTUs. To model transmission in the experiment data, the OTUs that are only
present in all samples were kept for further analysis. The original OTU table has 2950 OTUs; after
preprocessing, an OTU table with 76 OTU were obtained. This filtering helped reduce dimensionality
as well as solving sparsity problems.

6.5 RESULTS

6.5.1 Grouping OTUs as PMGs

PMGs is performed on OTU table obtained from the microbiome transmission experiment. After
OTU table construction and data preprocessing steps 76 OTUs for 29 samples were grouped in 9
PMGs. The Figure 19 shows the 9 PMGs on CODA dendrogram. Each node corresponds to a
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principal balance. The first 8 most informative principle balances were chosen to construct 9 PMGs.
OTUs were classified using Greengenes reference database (http://greengenes.lbl.gov) and the bar plot
in the figure 20 shows the taxonomy information of OTU groups on genus level. As seen, OTUs in
each group may have different taxonomies. Note that OTUs in the same group are approximately
proportional. Figure 21 and Figure 22 shows a heatmap of PMG and OTU abundance tables. OTUs
and PMGs which are abundant on each sample can be seen.

Biplots might help to interpret the microbiome abundance data by showing which OTUs dominate
on which samples. Figure 23 shows the biplot on the OTUs (before grouping) and PMGs (after
grouping). On the left biplot, the first 3 principal components explain the %58 of total variance.
The plot is clutter with 76 OTUs and the explained total variance is not informative, so that it is not
interpretable. On the right, the plot is clearer and the explained total variance for the first 3 principal
components is %90 of the total variance retained by the 9 selected .

The graph in the figure 24 shows the 9 PMGs (Gi) as a hub node and and OTUs included in each
PMG as connected nodes. Samples (Si) are connected to OTUs which are the most abundant in that
sample. The heatmap in the figure 21 also shows that G1 and G9 together are abundant on most of
the samples. Those microbial features in the G1 and G9 might refer to the colonizing base community
in the environment, in other words, the common characteristic of samples. On the other hand, it may
refer to a transmission between the samples.

6.5.2 Hierarchical Clustering of Samples after PMG construction

Hierarchical clustering analysis of samples might be used for detection of densely interconnected ob-
jects. Branches of the hierarchical clustering dendrogram might correspond consecutively contami-
nated objects. The first step of hierarchical clustering is deciding the distance metric between object.
It could be hypothetically assumed that if there is a transmission event between a pair of objects,
then their OTU compositions should be similar, i.e the distance between two composition should be
small. The variation matrix can be used as a distance matrix between objects. If the variation of two
compositions is 0, then they are proportional.

One drawback of hierarchical clustering is the determination of a cutting point to detect clusters in the
data set. Pvclust[154] is a R package for assessing the uncertainty in hierarchical clustering. Pvclust
calculates p-values for hierarchical clustering via multiscale bootstrap resampling. Pvclust provides
three p-values: SI (selective inference) p-value, AU (approximately unbiased) p-value and BP (boot-
strap probability) value for each cluster in a dendrogram. Clusters with high AU or SI values are
strongly supported by data.

Pvclust was applied on OTU table and PMGs table with 10000 bootstrap replications. The Ward
method was used as the agglomerative method in hierarchical clustering and the square root of the
variation matrix was used as a distance measure.

Before grouping data, pvclust could detect two clusters with %98 confidence (S4-S6-S16 and S11-
S12). After grouping four clusters were detected with %98 confidence (S10-S11-S12, S19-S20-S29,
S2-S13, S8-S16-S4-S6, S22-S5-S1-S14, S25-S26) as seen in the figure 25. In the table 7, detailed
comments on why the samples go together in a cluster is explained. As a result, grouped data revealed
more clusters in which consecutive samples in.
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Table 7: The explanations of the pvclust clusters

Cluster Description

S10-S11-S12 consecutively contaminated objects

S19-S20-S29 S19 and S20 is consecutively contaminated objects and S29 is hand. The reason
S29 goes with this cluster might be that the material of S19 is leather.

S2-S13 the same object that have sampled two times

S22-S5-S1-S14 S1 and S14 could be considered consecutively contaminated objects, because
S1 and S13 are the same object. S1, S5 and S14 are also located close to each
other. They are objects on the common desk and their microbiome could have
high variability. S5 and S23 are located closely and S22-S23 are consecutively
contaminated objects. The material of S22 is glass so microbial features after a
touch could grow easily on the material. That could be the reasons these samples
go together in a cluster. On the other hand, those samples have high microbial
materials after sequencing (See the rarefaction curve in the figure 18).

S25-S26 consecutively contaminated objects

S8-S16-S4-S6 S4-S5-S6-S7-S8 are consecutively contaminated objects, but S5 and S7 do not
show up in this cluster. The reason could be the high variability of S5. S4 and S17
are the same object. This cluster might reflect the circle effect in the experiment
path (See the figure 17. The square at the bottom reflecting the circle contagion
order of the objects between S4 and S17.

6.6 Discussion and Conclusion

In this research, the aim was to group OTUs and to investigate any hint of microbial transmission.
Grouping OTUs as PMGs improves the revelation of some consecutive samples in the experiment
data. However, the microbial transmission experimental data is limited and drawing a conclusion
is difficult with only one experiment. More structured experiments are needed for investigation of
microbial transmission problem.
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Figure 21: Heatmap of PMGs abundance table.
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Figure 22: Heatmap of OTUs abundance table.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

In this dissertation I have discussed several certain aspects of the statistical analysis of microbiome data
and proposed a novel grouping procedure for microbiome data using a compositional data approach.
The proposed procedure is used for two problems for demonstration: (1) in the search of biomarkers
and (2) to track microbial transmission.

I started by giving a brief introduction how microbiome data is produced and the compositional nature
of the microbiome data. Then, the principals and statistical methodologies of compositional data were
reviewed. Next, a novel procedure called "Principal Microbial Groups (PMGs)" was proposed as an
alternative to phylogenetic grouping of microbial features in Chapter 5. PMGs were used in the search
of biomarkers, and had promising results for the Cirrhosis dataset. PMG construction enables working
with coarse groups of OTUs in the dataset. PMGs also have some interpretation advantages in reducing
dimensionality and provide balances of microbial groups that can be used for disease prediction. PMG
table of the Cirrhosis dataset exhibited performance rivaling OTU and genus-level tables on balance
selection methods selbal and codacore algorithms. The OTU content of PMGs are consistent with the
literature findings in term of association with disease. As a future work, more datasets will be analyzed
in order to understand the biological meaning of PMGs and their role in the search of biomarker.

We also used, PMGs are aimed to investigate to tracking microbial transmission and aimed to even-
tually to infer a microbial network. In Chapter 3, an overview of the microbial network inference
methodologies and microbial association methods are summarized. Then, the microbial transmission
experiment is explained and PMGs are used to investigate microbial transmission in Chapter 6. Group-
ing OTUs with the proposed methodology improves the revelation of some consecutive samples in the
experiment data. However, the microbial transmission experimental data was limited and constructing
a network was not possible with only this experiment. More structured experiments are needed in
order to investigate microbial transmission procedure and to infer a microbial network for contagion.

While the proposed methodology provides a valid grouping of OTUs using the CoDa approach, de-
termination of the number of groups and interpreting the biological meaning of those groups are open
questions for future work.
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APPENDIX A

PRINCIPAL MICROBIAL GROUPS : EXTRA MATERIAL

A.1 Alternatives to PMG evaluation

Let x = (otu1, otu2, ...otuD) be a compositional observation with D microbial features. The pro-
cedure of PMG construction aggregates OTUs in groups that form the PMGs. The observation x

is substituted by the z-part composition of PMGs, y = (gm(PMG1), gm(PMG2), . . . , gm(PMGz)),
where z < D. In the present approach, the value assigned to PMGs is the geometric mean of the
relative frequencies of OTUs included. This option needs a justification and discussion of possible
alternatives.

A selection of PMGs is equivalent to an orthogonal projection of the data set onto a subspace in which
dimension is the number of selected PMGs minus one. The projection of x = (otu1, otu2, otu3, . . . , otuD)

onto a subspace (Aitchison geometry) in which all otui included in a specific PMG are replaced by
a single value, i.e. information within a PMG is removed. This constitutes an orthogonal projection
[43] and the resulting projected D-part composition has the form

(gm(PMG1), . . . , gm(PMG1)︸ ︷︷ ︸
r1equal components

, . . . , gm(PMGz), . . . , gm(PMGz)︸ ︷︷ ︸
rzequal components

) ,

gm(PMGi) =

rj∏
ℓ=1

(otuℓ)
1/rj , otuℓ included in PMGi ,

where gm(PMGi) appears ri times, as many as OTUs were grouped in PMGi. In this projected
compositions, any balance between PMGs always depends on the number ris.

However, the number of OTUs included in each PMG does not seem relevant in this context, since
these OTUs are not thought as the primary units for definition of biomarkers. Instead, the selected
PMGs are viewed as the parts of a new composition from which the compositional biomarker is se-
lected. It is thus natural to represent each PMGi by gm(PMGi), obtaining the z ≤ D part composition

y = (gm(PMG1), gm(PMG2), . . . , gm(PMGz)).

This technique is seldom used in applications [123]. However, there are alternatives to this dimension
reduction. For instance, the geometric mean can be replaced by the arithmetic mean or simply the sum
(amalgam) of the included OTUs. Note that in the case of amalgams, the number of initial OTUs is
again implicitly re-introduced.
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A.2 Stability of Principal Microbial Groups

The selection of PMGs is based on an unsupervised clustering of OTUs, frequently used to approach
principal balances [45]. Therefore, stability in the construction of PMGs is of a major concern. There
are, at least, two ways for examining how PMGs can vary: (1) a global view of the clustering tree,
and (2) focusing on the changes in a particular PMG. In both procedures the main difficulty is the
identification of a PMG in the clustering results obtained using different samples when the PMGs are
not exactly the same.

The distance between trees with equal leafs (OTUs) has been studied [155, 156]. These techniques
can be used for constructing confidence intervals, or in general, studying variability of trees. Here we
adopted a different metric between trees based on a compositional perspective.

A principal balance tree generates an ilr basis in the space of OTUs (compositions) and the correspond-
ing decomposition of the total variance in the sample as shown in CoDa-dendrograms [81]. Although
not rigorously proven, the composition made of the variances of the ilr-balance-coordinates appears to
characterize the clustering tree up to a permutation of the leafs of the tree. Then, the Aitchison-norm of
the composition of variances can be used to evaluate the variability of trees. Also, the distance between
trees can be defined as the Aitchison distance between the respective Variance Decompositions (VD)
when the clusters (PMGs) are well identified.

The following study is based on re-sampling (bootstrap) of the cirrhosis dataset. Individual samples
are randomly chosen, with replacement, thus obtaining new data sets, with prescribed sizes.

In a first study, 50 re-samplings where used to generate PMGs. The cluster trees where cut at different
levels (number of PMGs). Figure 26-A, shows quantiles (minimum –circles–, 0.25 –black line–,
median –blue line–, 0.75 –black line–, maximum –circles–) of the VD norm for different levels of
the tree characterized by the number of PMGs generated. The red line is the VD norm obtained for
the original data. Figure 26-B shows the square-norms divided by the number of generated PMGs.
This parameter was introduced as an inequality index in the VD [67] that can be interpreted as an
information index.

The norm of VD is used in order to avoid detailed identification of each generated PMG. The smooth-
ness of these curves shows the stability of groups when deciding an appropriate number of PMGs. The
original VD norm (red line) is not in the lower tail of the VD norm distribution, thus suggesting that the
original data is not an outlier with respect to the re-sampling distribution. The behaviour of the curves
corresponds to what is expected. The VD norm for a large number of groups tends, monotonically
increasing, to the square root of the total variance of the data set (Figure26-A). In the Figure26-B, the
VD square-norm decreases after the first groupings. This means that the information in the VD asso-
ciated with the PMGs slowly increases by increasing the number of PMGs after the first groupings.
It also means that the variance within the PMGs decreases with the number of groups.

Aitchison distances between re-samplings of different sizes were also studied using 50 re-samplings of
the original data set. Figure 27 shows that there is an imperceptible change of the VD norm in median
of the re-sampling, while there is a slight decreasing of variability with the sample size. These features
were expected since the cluster trees are based on the variation matrix of the data. The increase of the
sample size reduces the variance of the variation matrix entries, while it approximately maintains the
value of the variance estimator.
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A B

Figure 26: Quantiles of VD Aitchison norm (Panel A) and square-norm over the number of PMGs
(Panel B) : minimum –circles–, 0.25 –black line–, median –blue line–, 0.75 –black line–, maximum
–circles– for 50 re-samplings of different sample size. The red line indicates the VD norm of the
original data set.
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Figure 27: Quantiles of VD norm: minimum –circles–, 0.25 –black line–, median –blue line–, 0.75
–black line–, maximum –circles– for 50 re-samplings of different sample size. The red line indicates
the VD norm of the original data set.
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Figure 28: Jaccard distances from the original PMGs to those identified in the 50 re-samplings repre-
sented as boxplots. PMGs are indicated in the x-axis.

Individual PMGs can be examined along the 50 re-samplings. The following six (PMG3, PMG14,
PMG23, PMG24, PMG26 and PMG27) have been chosen and their OTU composition, based on the
original sample, has been considered as a reference. For each re-sampling, 27 groups are built using
the clustering techniques. Each reference PMG is then compared with the groups in a re-sampling
using the Jaccard distance [157]. The group with the smallest Jaccard distance to the reference is
identified as the new group in the re-sampling.

The Jaccard distance [157] between two groups A and B is given by

dJ(A,B) = 1− |A ∩B|
|A ∪B|

,

where | · | denotes cardinal of the group and ∩ and ∪ are the ordinary intersection and union of sets,
respectively. The Jaccard distance can be interpreted as the proportion of elements in |A∪B| which are
not in the intersection of the two groups. Therefore, dJ(A,B) = 0 corresponds to total coincidence
between A and B, whereas dJ(A,B) = 1 indicates that A and B are disjoint.

Figure 28 shows the Jaccard distance boxplots for the six mentioned PMGs along the 50 re-samplings.
PMG3, PMG26, and PMG27 are almost always exactly identified, with 0 Jaccard distances to original
PMG. PMG23 and PMG24 are also well identified, although not exactly. PMG14 is in general not
well identified.

We can conclude that PMG construction using cluster of OTUs (Wards method using variation matrix)
is reasonably stable when using the cirrhosis dataset.

The R-scripts to reproduce the above studies (up to simulations) are available at https://github.com/asliboyraz/PMGs.
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A.3 Benchmarking Methods for Dimension Reduction

PMG balances are benchmarked against competing dimension reduction methods designed for compo-
sitional data (PCA, PBA, DBA-distal). The logistic regression classification performances of reduced
datasets were compared. The following list summarizes each dimensionality reduction technique ap-
plied to the dataset for benchmarking and how to represent the dataset with each technique in R.

• PMG Balances : obtain ilr transformed PMGs that are z − 1 coordinates and performs logistic
regression.

• Principal Components: obtain the log-transformed OTU table and apply PCA. Retain the first
z − 1 principal components and perform logistic regression.

• Principal Balances: retain the first z − 1 principal balances and perform logistic regression.

• Distal Balances: retain the first z − 1 distal balances and perform logistic regression.

A.3.1 PCA representation

The preprocessed OTU table (filtered and zeros removed) (see Section Dataset and Preprocessing)
is compositional and PCA can not be directly applied to a compositional dataset [68]. The clr-
transformation is the commonly used method to apply PCA on compositional data [114]. Selecting
the first z principal coordinates reduces the dimension to z.

/ / x must be non z e r o
pcaRep f u n c t i o n ( x , numberOfDim )

p r c prcomp ( x= c l r (X) , r e t x =TRUE
, r ank =numberOfDim
, c e n t e r =TRUE)

d a t a . pca as . d a t a . f rame ( p r c x )
r e t u r n ( d a t a . pca )

A.3.2 Principal Balance representation

Principal Balances (PBs) [71] are defined as a sequence of orthonormal balances which maximize suc-
cessively the explained variance in a compositional dataset. A set of orthonormal balances is defined
using a SBP and SBP can be approximated by the hierarchical clustering of parts using Ward’s method.
In R package balance [79], pba function performs a principal balance analysis using the hierarchical
clustering of components. Selecting the first z principal balances reduces the dimension to z.

/ / x must be non z e r o
pbaRep f u n c t i o n ( x , numberOfDim )

l i b r a r y ( b a l a n c e )
modelPba pba ( x )
d a t a . pb as . d a t a . f rame ( modelPba@pba )
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d a t a . pb d a t a . pb [ , 1 : ( numberOfDim ) ]
r e t u r n ( d a t a . pb )

A.3.3 Distal Balance representation

DBA-distal method selects only predictive small balances (those involving 2 or 3 parts of the compo-
sition) [107]. The algorithm tries to generate a SBP that maximizes the discriminant potential of the
distal branches. Unlike other methods, DBA-distal is supervised method and needs data labels (cirrho-
sis, non-cirrhosis in our case). Methods in the R package balance are used to obtain distal balances.
Selecting the first z distal balance reduces the dimension to z.

/ / x must be non z e r o .
d i s t a l B a l R e p f u n c t i o n ( x , l a b e l s , numberOfDim )

l i b r a r y ( b a l a n c e )
sbp sbp . fromADBA ( x , l a b e l s )
sbp sbp . s u b s e t ( sbp )

m o d e l D i s t a l b a l a n c e . fromSBP ( x=x , y = sbp )
d a t a . d i s t a l B a l a s . d a t a . f rame

( m o d e l D i s t a l [ , 1 : numberOfDim ] )

r e t u r n ( d a t a . d i s t a l B a l )
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A.4 Supplementary Tables

Table 8: Classification performances of reduced datasets processed with four dimensionality reduction
procedures for disease prediction on the cirrhosis dataset.

Feature Reduction Methods∗ AUC (on OTUs) AUC (on Genus Level Table)

PMG balances 0.86 -
Principal Components 0.85 0.84
Principal Balances 0.84 0.84
Distal balances 0.85 0.85

Each method uses 26 dimension for fair comparison. PMG balances were not calculated on the
genus-level table, since PMGs are designed for grouping OTUs as an alternative to taxon grouping.

Table 9: Selected balances by balance selection methods on different data types and AUC measures
for the classification performance.

Method Data types1 AUC2 Selected Balances3

Selbal OTUs 0.88 (Veil.parvula, Mega.micro.) / Bact.uni.
Genus Level Table 0.87 (Megasphaera/Unc.Erysip)
PMGs 0.91 G26/G14

Codacore OTUs 0.90 (Lac.salivarius, Megas.micro.)/(Adler.equ., Alis.indis.)
Genus Level Table 0.92 (Lactobacillus, Megasphaera, Veillonella, Rodentibacter) /(Adlercreutzia, Romboutsia)
PMGs 0.89 (G3,G26)/G23

The dimension of input PMG table is 27.
5-fold CV. n.iter=10.
Selected OTU balances were named with corresponding species. Selected PMG balances were
named with group name. Only the global balance were reported for selbal.
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Table 10: Classification performances (AUC1) of distal balances with different data types for disease
prediction on the cirrhosis dataset.

Number of Balances2 distal-OTU balances distal-genus balances distal-PMG balances

1 0.930 0.910 0.924
2 0.947 0.927 0.925
3 0.940 0.935 0.932
4 0.936 0.933 0.928
5 0.940 0.933 0.933
6 0.939 0.929 0.928
7 0.939 0.929 0.929
8 0.939 0.925 0.929
9 0.933 0.920 0.922
10 0.932 0.915 0.913
11 0.928 0.912 0.918
12 0.925 0.908 0.918
13 0.927 0.908 0.912
14 0.921 0.914 0.906
15 0.922 0.911 0.901

5-fold CV. n.iter=10.
15 distal PMG balances were obtained on PMG table by DBA-distal. Thus, the first 15 distal
balances were included in logistic regression for all data types.

94


	ABSTRACT
	ÖZ
	DEDICATION
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	Research Questions
	Contributions of the Study
	Organization of the Thesis

	MICROBIOME DATA and COMPOSITIONALITY
	Microbiome Data
	 OTU Clustering Methods 
	 Problems about OTU Clustering Methods
	 Sequence Variants (SV) Methods 
	 Dada2 
	 Unoise2 
	 Deblur 


	 Statistical Challenges of Microbiome Data 
	Compositional Data Approach for Microbiome Analysis 
	 Why Microbiome Data is Compositional 
	 Challenges of CODA Approach on Microbiome Data Analysis 
	 Normalization of Sequence Data 
	The problem of Zero Components
	High Dimensionality



	NETWORK INFERENCE FROM METAGENOMICS DATA
	 Visualization of Metagenomic Data 
	Microbial Dependency Measures
	Correlation and Partial Correlation

	Methods for Microbial Co-occurrence 
	CCLasso
	REBACCA
	CCREPE
	SPIEC-EASI
	SPARCC
	CONET and MIC
	LSA
	PROXI
	COAT

	Methods for Microbial Co-exclusion 
	CO-EX

	Multidimensional Boolean Patterns in Microbial Communities
	SourceTracker

	COMPOSITIONAL DATA ANALYSIS
	 What is Compositional Data?
	 Principles of Compositional Data 
	 Principles of Scale Invariance
	 Principles of Permutation Invariance
	 Principles of Subcomposition coherence


	Aitchison Geometry
	 Defining Simplex as a Vector Space. 
	 Log Ratio Analysis: A Statistical Methodology for Compositional Data Analysis 
	 Additive Log Ratio (alr) Transformation 
	 Centered Log Ratio (clr) Transformation
	 Isometric Log Ratio (ilr) Transformation

	 Compositional Distance 

	Basis and Balances
	 Principle Balances

	 Exploratory Data Analysis of Compositional Data
	 Center, Variation Matrix and Covariance Structure of Compositional Data
	 Correlation Analysis of Compositional Data
	 Regression Analysis of Compositional Data
	 Case 1: Response is Real , Covariates are Compositional 
	 Case 2: Covariates is real , Response are compositional 
	 Case 3: Both Covariates and Response are compositional 

	 PCA for Compositional Data
	 Biplot for Compositional Data
	CODA Dendrogram


	 PRINCIPAL MICROBIOME GROUPS FOR BIOMARKER INVESTIGATION
	Introduction
	Compositional Data (CODA) Approach for Microbiome Data Analysis

	 MATERIALS AND METHODS 
	 Overview of Principal Microbial Groups 
	(1) Select an appropriate SBP
	(2) Choose the optimal number of PMGs 
	(3) Select Compositional Biomarkers 

	Dataset and Preprocessing
	Benchmark Evaluation
	Results
	PMG Balances as Dimensionality Reduction Method
	PMGs as Feature Aggregation Procedure
	PMG Balances as Biomarker Candidates
	Compositional Biomarker.

	CODA Dendrogram to Discover Discriminatory Power of the Balances


	Discussion and Conclusion
	Key Points

	PRINCIPAL MICROBIAL GROUPS FOR MICROBIAL TRANSMISSION
	Introduction
	 Nosocomial Infections and Indoor Microbiome 
	Microbial Transmission Modelling
	 How to Define Microbial Transmission ? 

	 Controlled Experiment 
	Sampling
	DNA isolation
	16S rRNA Polymerase Chain Reaction and Sequencing
	Otu Picking
	Preprocessing Data

	RESULTS
	Grouping OTUs as PMGs
	Hierarchical Clustering of Samples after PMG construction

	Discussion and Conclusion

	CONCLUSION AND FUTURE WORK
	REFERENCES
	Principal Microbial Groups : Extra Material
	Alternatives to PMG evaluation
	Stability of Principal Microbial Groups
	 Benchmarking Methods for Dimension Reduction 
	PCA representation
	Principal Balance representation
	 Distal Balance representation

	Supplementary Tables


