Micro-scale Fuel Cell cogeneration system response combined with heat pump consumption in arid zones.


Bendaikha W., Ghriss O., Larbi S., Bouabidi A., Cüce E.

ENERGY, cilt.306, ss.132107, 2024 (SCI-Expanded)

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 306
  • Basım Tarihi: 2024
  • Doi Numarası: 10.1016/j.energy.2024.132107
  • Dergi Adı: ENERGY
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, PASCAL, Aerospace Database, Applied Science & Technology Source, Aquatic Science & Fisheries Abstracts (ASFA), CAB Abstracts, Communication Abstracts, Compendex, Computer & Applied Sciences, Environment Index, INSPEC, Metadex, Pollution Abstracts, Public Affairs Index, Veterinary Science Database, Civil Engineering Abstracts
  • Sayfa Sayıları: ss.132107
  • Recep Tayyip Erdoğan Üniversitesi Adresli: Evet

Özet

This study aims to evaluate a new concept for Cogeneration Energy System (CES) designed to supply an area of 80 m2 located in an arid zone (Southern Algeria). A heat balance is conducted on a prototype house using real data. Numerical simulations are performed to test the heat balance with a Proton Exchange Membrane Fuel Cell PEMFC sub-system (PEMFCs). The design targets to provide both electrical and thermal energy required for the house. Simulation and energy balance allow to assess the heat transfer of the entire system for both heating and cooling operation modes. The variations in critical temperatures at the inlets and outlets of the heat storage tank, the energy transferred from the PEMFCs to the load, and the required hydrogen quantity are determined. In heating mode, the cogeneration efficiency of the PEMFCs stands at around 68.5%, while the CES efficiency ranges between 65.8% and 67.3%. In cooling mode, the PEMFCs efficiency ranges from 64.5% and 68.5%, with CES efficiency also ranging from 64.2 and 66.2%. Based on these findings, the CES for a home in an arid region requires a maximum power of approximately 1 kW and a hydrogen consumption of 5 kgH2.