Journal Of Biotechnology, cilt.341, ss.155-162, 2021 (SCI-Expanded)
The essential goals of this present study are to elucidate the formation mechanism of ellagic acid rich-blackberry, BBE, (Rubus fruticosus L.) and raspberry, RBE, (Rubus idaeus L.) extracts directed silver nanoparticles and to investigate thier antimicrobial properties towards model dental pathogens E. faecalis and C. albicans compared to BBE, RBE, NaOCl, CHX and EDTA. Both %5 w/w of BBE and RBE reacted with 5 mM Ag +ions at room tem-perature (25 ◦C) under mild-stirring, the formation of BBE and RBE directed b@Ag NP and r@Ag NP was monitored over time by using an Uv-vis spectrophotometer. Both b@Ag and r@Ag NPs were also complemen-tarily characterized with SEM and FT-IR. In terms of the antimicrobial studies, b@Ag NP, r@Ag NP, %5 BBE and RBE, 5 mM AgNO3, %5 NaOCl, %1,5 CHX and %15 EDTA were separately incubated with E. faecalis and C. albicans suspensions. The results were evaluated with student t-test using GraphPad Prism 8.0.1 statistical software (P <0.05). While formation of b@Ag NP was confirmed with characteristic absorbance at ~435 nm in 20 min (min) of incubation, r@Ag NP did not give absorbance till 80 min owing to concentration of ellagic acid acted as a reducing and stabilizng agent for formation of the Ag NPs. Intrestingly, 50 ppm r@Ag NP inactivated ~89% and ~99% of E. faecalis and C. albicans cell, respectively, ~25% and ~40% cell inactivations for E. faecalis and C. albicans were observed respectively with 50 ppm b@Ag NP. We showed that 50 ppm r@Ag NP has effective antimicrobial property as much as mostly used %5 NaOCl and %1,5 CHX solutions.