Temperature-tuned band gap energy and oscillator parameters of GaS0.5Se0.5 single crystals


Creative Commons License

Isik M., Tugay E., Gasanly N.

OPTIK, cilt.127, sa.20, ss.8301-8305, 2016 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 127 Sayı: 20
  • Basım Tarihi: 2016
  • Doi Numarası: 10.1016/j.ijleo.2016.06.041
  • Dergi Adı: OPTIK
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.8301-8305
  • Recep Tayyip Erdoğan Üniversitesi Adresli: Evet

Özet

Temperature-dependent transmission and room temperature reflection measurements were carried out on GaS0.5Se0.5 single crystal in the wavelength range of 380-1000 nm to investigate its optical parameters. The analysis of the temperature-dependent absorption data showed that direct and indirect band gap energies increase from 2.36 to 2.50 eV and 2.27 to 2.40 eV, respectively, as temperature is decreased from 300 to 10 K. The rates of change of the direct and indirect band gap energies with temperature was found around -7.4 x 10(-4) eV/K from the analysis of experimental data under the light of theoretical relation giving the band gap energy as a function of temperature. The absolute zero value of the band gap energies were also found from the same analysis as 2.50 eV (for direct) and 2.40 eV (for indirect). Wemple-DiDomenico single effective oscillator model, Sellmeier oscillator model and Spitzer-Fan model were used for the room temperature reflection data to find optical parameters of the crystal. (C) 2016 Elsevier GmbH. All rights reserved.