The influence of vacancy-induced local strain on the transport properties in armchair and zigzag graphene nanoribbons


Sensoy M. G.

MATERIALS RESEARCH EXPRESS, cilt.6, sa.4, 2019 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 6 Sayı: 4
  • Basım Tarihi: 2019
  • Doi Numarası: 10.1088/2053-1591/aafd64
  • Dergi Adı: MATERIALS RESEARCH EXPRESS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Recep Tayyip Erdoğan Üniversitesi Adresli: Evet

Özet

We investigate the transport properties of defected graphene nanoribbons with single C vacancy using non-equilibrium Green's function formalism within the tight-binding model approach. The insights derived from the analysis of geometric and electronic structure allow us to infer the localized nature of the defect-induced structure relaxation and transport properties. We show that the single vacancy position and concentration in graphene nanoribbons can alter the transmission spectrum and current-voltage characteristics. We consider the dependence of the transport properties on the local strain caused by the C vacancy positions and concentration. We conclude that such defect profoundly modifies the mechanical and electronic properties of the graphene nanoribbons, and introduce new transport properties by allowing the atomic rearrangement.