PHYSICAL REVIEW E, vol.74, 2006 (SCI-Expanded)
We show that the dynamic approach to fractional Brownian motion (FBM) establishes a link between a non-Poisson renewal process with abrupt jumps resetting to zero the system's memory and correlated dynamic processes, whose individual trajectories keep a nonvanishing memory of their past time evolution. It is well known that the recrossings of the origin by an ordinary one-dimensional diffusion trajectory generates a Levy (and thus renewal) process of index theta=1/2. We prove with theoretical and numerical arguments that this is the special case of a more general condition, insofar as the recrossings produced by the dynamic FBM generates a Levy process with 0