ON THE FINE SPECTRUM OF QUADRUPLE BAND MATRIX OPERATOR OVER c(0) AND c


BİŞGİN M. C.

ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, cilt.50, sa.5, ss.1567-1581, 2020 (SCI İndekslerine Giren Dergi) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 50 Konu: 5
  • Basım Tarihi: 2020
  • Doi Numarası: 10.1216/rmj.2020.50.1567
  • Dergi Adı: ROCKY MOUNTAIN JOURNAL OF MATHEMATICS
  • Sayfa Sayıları: ss.1567-1581

Özet

We give the fine spectrum of the quadruple band matrix operator Q (r, s, t, u) over C-0 and c. The matrix Q(r, s, t, u) generalizes Delta(3), D(r, 0, 0, s), B(r, s, t), Delta(2), B(r, s), Delta, right-shift and Zweier matrices, where Delta(3), B(r, s, t), 42, B(r, s) and Delta are called third-order difference, triple band, second-order difference, double band (generalized difference) and difference matrix, respectively.