Parametric optimization for enhancing the electrical performance of hybrid photovoltaic/thermal and thermally regenerative electrochemical cycle system


Sha Y., Tang X., Cüce E., Li G., Zhao X.

ENERGY, cilt.307, ss.132699, 2024 (SCI-Expanded)

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 307
  • Basım Tarihi: 2024
  • Doi Numarası: 10.1016/j.energy.2024.132699
  • Dergi Adı: ENERGY
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, PASCAL, Aerospace Database, Applied Science & Technology Source, Aquatic Science & Fisheries Abstracts (ASFA), CAB Abstracts, Communication Abstracts, Compendex, Computer & Applied Sciences, Environment Index, INSPEC, Metadex, Pollution Abstracts, Public Affairs Index, Veterinary Science Database, Civil Engineering Abstracts
  • Sayfa Sayıları: ss.132699
  • Recep Tayyip Erdoğan Üniversitesi Adresli: Evet

Özet

Globally, the efficient utilization of solar energy has garnered significant attention. A hybrid system of photovoltaic/thermal (PV/T) modules integrated with thermally regenerative electrochemical cycle (TREC), i.e., PV/T-TREC has emerged recently and shows higher efficiency for solar-to-electrical conversion than a standalone PV system. However, there is a trade-off between the electricity generation from PV/T and TREC because the thermal energy from PV/T degrades the efficiency of the PV/T but improves that of TREC. Previous studies have failed to investigate this problem. This study therefore focuses on the key parameters that significantly affect the thermal output of PV/T, i.e., different PV materials, air gaps, heat storage tank volumes, and working fluids to investigate the maximum electrical efficiency of the hybrid system. The mathematical and transient-state numerical models are developed with the validation/refinement from the experiments. The results show that the hybrid system with PV material of cadmium telluride presents the best overall electrical efficiency of 25.37%. The case of the air gap fosters the solar-to-electrical conversion. The electrical efficiency versus heat storage tank volume shows a convex curve, peaking at 200 L. The nanofluid performs the best. This study may help guide the practical application of such a high-efficiency electricity generation system.