Diagnostic and Interventional Radiology, vol.29, no.2, pp.251-259, 2023 (SCI-Expanded)
PURPOSE To evaluate the image quality and tumor morphology depiction ability of high resolution (HR) dif- fusion-weighted imaging (f-DWI) in comparison to conventional DWI (c-DWI) and dynamic con- trast-enhanced magnetic resonance imaging (DCE-MRI) in the primary breast cancer setting. METHODS The f-DWI, c-DWI, and DCE-MRIs of 160 malignant breast masses were evaluated retrospectively by two independent radiologists. Data on image quality [sharpness, distortion, and perceived signal- to-noise ratio (SNR)], apparent diffusion coefficient (ADC) value, lesion size, and tumor morphology (shape, margin, and internal pattern) obtained on f-DWI, c-DWI, and DCE-MRI were compared. Con- sistency between the readers and imaging methods for morphological parameters was analyzed. RESULTS The ADC values measured on f-DWI were significantly lower than those measured on c-DWI for both readers (P < 0.001 for each), whereas mean lesion size was significantly larger in c-DWI than in f-DWI and DCE-MRI for both readers (P < 0.001 for each). Higher consistency values were obtained for f-DWI compared with c-DWI when correlated with DCE-MRI for each morphological parame- ter. The least distorted images were obtained using DCE-MRI compared with c-DWI and f-DWI for both readers, whereas the highest distortion scores were obtained using c-DWI. Sharpness and per- ceived SNR scores were rated as significantly higher for f-DWI and DCE-MRI images compared with c-DWI by both readers (P < 0.001 for all). The concordance between c-DWI and DCE-MRI was fair to slight (κ = 0.15 to 0.41), whereas concordance between f-DWI and DCE-MRI was significantly better (κ = 0.68 to 0.87) for each reader and for all morphological parameters (P < 0.001). The highest con- cordance between the readers was achieved in margin assessment (κ = 0.87 to 0.89) regardless of the MRI method, followed by shape and internal pattern parameters (κ = 0.63 to 0.79). CONCLUSION The results demonstrated that f-DWI produces higher-quality images than c-DWI, enabling the morphological features to be identified in similar detail to that offered by HR DCE-MRI. Accordingly, f-DWI, as a method that highly correlates with DCE in determining the morphological character- istics of breast cancers, seems to have potential in the evaluation of breast tumors in patients for whom the use of contrast media is contraindicated.