Nitric oxide could allay arsenic phytotoxicity in tomato (Solanum lycopersicum L.) by modulating photosynthetic pigments, phytochelatin metabolism, molecular redox status and arsenic sequestration


Ghorbani A., Pishkar L., Roodbari N., Pehlivan N., Wu C.

PLANT PHYSIOLOGY AND BIOCHEMISTRY, cilt.167, ss.337-348, 2021 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 167
  • Basım Tarihi: 2021
  • Doi Numarası: 10.1016/j.plaphy.2021.08.019
  • Dergi Adı: PLANT PHYSIOLOGY AND BIOCHEMISTRY
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, PASCAL, BIOSIS, Biotechnology Research Abstracts, CAB Abstracts, Chemical Abstracts Core, EMBASE, Food Science & Technology Abstracts, MEDLINE, Veterinary Science Database
  • Sayfa Sayıları: ss.337-348
  • Anahtar Kelimeler: Solanum lycopersicum L., Arsenic toxicity, Sodium nitroprusside, Phytochelatin, Vacuolar sequestration, Oxidative stress, INDUCED OXIDATIVE STRESS, SODIUM-NITROPRUSSIDE, METHYLGLYOXAL DETOXIFICATION, PLANT-GROWTH, ANTIOXIDANT, TOLERANCE, ACID, ACCUMULATION, GLUTATHIONE, TOXICITY
  • Recep Tayyip Erdoğan Üniversitesi Adresli: Evet

Özet

Plants do not always have the genetic capacity to tolerate high levels of arsenic (As), which may not only arrest their growth but pose potential health risks through dietary bioaccumulation. Meanwhile, the interplay between the tomato plants and As-NO-driven molecular cell dynamics is obscure. Accordingly, seedlings were treated with As (10 mg/L) alone or in combination with 100 mu M sodium nitroprusside (SNP, NO donor) and 200 mu M 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO, NO scavenger). Sodium nitroprusside immobilized As in the roots and reduced the shoot translocation by up-regulating the transcriptional expression of the PCS, GSH1, MT2, and ABC1. SNP further restored the growth retardation through modulating the chlorophyll and proline metabolism, increasing NO accumulation and stomatal conductance along with clear crosstalk between the antioxidant activity as well as glyoxalase I and II leading to endogenous H2O2 and MG reduction. Higher PCs and glutathione accumulation helped protect photosynthetic apparatus; however, cPTIO reversed the protective effects of SNP, confirming the role of NO in the As toxicity alleviation.