Study of the hydrothermal crystallization process of barium titanate by means of X-ray mass attenuation coefficient measurements at an energy of 59.54 keV


Ozen S. A. , Ozen M., Sahin M. , Mertens M.

MATERIALS CHARACTERIZATION, vol.129, pp.329-335, 2017 (Journal Indexed in SCI) identifier identifier

  • Publication Type: Article / Article
  • Volume: 129
  • Publication Date: 2017
  • Doi Number: 10.1016/j.matchar.2017.05.006
  • Title of Journal : MATERIALS CHARACTERIZATION
  • Page Numbers: pp.329-335

Abstract

In this work, the X-ray mass attenuation coefficients of hydrothermally synthesized barium titanate (BaTiO3) samples were calculated with the purpose of determining the crystallization sequence of BaTiO3. Hydrothermally synthesized samples prepared at 100 degrees C and 200 degrees C, and reacted for varying reaction times between 15 min up to 120 h were studied. Attenuation coefficient measurements were done with a coaxial HPGe gamma detector (Ortec, GEM55P4-95) with a working range in the X-ray energy region. The samples were made into pellets and were exposed to Am-241 radioisotopes at an energy of 59.54 keV for 300 s. Additionally, FT-Raman and XRD measurements were done to support the X-ray mass attenuation measurements. It was found that secondary barium titanate (BT) phases (BaTi2O5 and Ba2TiO4) were formed from the precursor material at the early stages of the hydrothermal reaction and that phase pure BaTiO3 was formed at longer reaction times. The sequence of barium titanate crystallization was determined as follows: BaTi2O5; BaTi2O5 and BaTiO3; BaTi2O5, Ba2TiO4 and BaTiO3: and phase pure BaTiO3.