YOLO-V5 based deep learning approach for tooth detection and segmentation on pediatric panoramic radiographs in mixed dentition


Beser B., Reis T., BERBER M. N., Topaloglu E., GÜNGÖR E., Kılıc M. C., ...Daha Fazla

BMC Medical Imaging, cilt.24, sa.1, 2024 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 24 Sayı: 1
  • Basım Tarihi: 2024
  • Doi Numarası: 10.1186/s12880-024-01338-w
  • Dergi Adı: BMC Medical Imaging
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Biotechnology Research Abstracts, EMBASE, MEDLINE, Directory of Open Access Journals
  • Anahtar Kelimeler: Artificial intelligence, Deep learning, Panoramic radiographs, Pediatric dentistry, Tooth enumeration
  • Recep Tayyip Erdoğan Üniversitesi Adresli: Evet

Özet

Objectives: In the interpretation of panoramic radiographs (PRs), the identification and numbering of teeth is an important part of the correct diagnosis. This study evaluates the effectiveness of YOLO-v5 in the automatic detection, segmentation, and numbering of deciduous and permanent teeth in mixed dentition pediatric patients based on PRs. Methods: A total of 3854 mixed pediatric patients PRs were labelled for deciduous and permanent teeth using the CranioCatch labeling program. The dataset was divided into three subsets: training (n = 3093, 80% of the total), validation (n = 387, 10% of the total) and test (n = 385, 10% of the total). An artificial intelligence (AI) algorithm using YOLO-v5 models were developed. Results: The sensitivity, precision, F-1 score, and mean average precision-0.5 (mAP-0.5) values were 0.99, 0.99, 0.99, and 0.98 respectively, to teeth detection. The sensitivity, precision, F-1 score, and mAP-0.5 values were 0.98, 0.98, 0.98, and 0.98, respectively, to teeth segmentation. Conclusions: YOLO-v5 based models can have the potential to detect and enable the accurate segmentation of deciduous and permanent teeth using PRs of pediatric patients with mixed dentition.