Three-dimensional numerical investigation of flow through screens as energy dissipators


Daneshfaraz R., Sadeghfam S., Ghahramanzadeh A.

CANADIAN JOURNAL OF CIVIL ENGINEERING, cilt.44, sa.10, ss.850-859, 2017 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 44 Sayı: 10
  • Basım Tarihi: 2017
  • Doi Numarası: 10.1139/cjce-2017-0273
  • Dergi Adı: CANADIAN JOURNAL OF CIVIL ENGINEERING
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.850-859
  • Recep Tayyip Erdoğan Üniversitesi Adresli: Hayır

Özet

Screens, perforated units to dissipate energy in hydraulic structures, are investigated numerically in this study. These units are part of a physical setup exposed to supercritical flows, normally created by sluice gates. The interaction of perforated screens and supercritical flows results in local complex three-dimensional flows, which can be analyzed by the application of RANS-based flow equations. The most important controlling parameters include supercritical Froude number between 2 and 10 and screen porosity of 40% and 50%. Numerical water surface profiles and energy dissipation are validated by the author's experimental data. This paper derives a set of equations in terms of depth ratio of the hydraulic jump through the perforated screens and assesses the effect of baffles on energy dissipation. This study seeks a proof-of-concept for the application of the RANS-based technique for further application of the result to real hydraulic structures in due course.