One step preparation of stable gold nanoparticle using red cabbage extracts under UV light and its catalytic activity


Unal I. S., Demirbas A., Onal I., ILDIZ N., ÖÇSOY İ.

JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY, cilt.204, 2020 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 204
  • Basım Tarihi: 2020
  • Doi Numarası: 10.1016/j.jphotobiol.2020.111800
  • Dergi Adı: JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Agricultural & Environmental Science Database, Aquatic Science & Fisheries Abstracts (ASFA), BIOSIS, CAB Abstracts, Chemical Abstracts Core, Chimica, EMBASE, MEDLINE, Veterinary Science Database
  • Anahtar Kelimeler: Anthocyanin, Au nanoparticle, Photo-reduction, Salt tolerance and catalytic activity, SILVER NANOPARTICLES, GRAPHENE OXIDE, AU NANOPARTICLES, METALLIC NANOPARTICLES, ANTIMICROBIAL ACTIVITY, SIZE CONTROL, AG NPS, ANTIOXIDANT, BIOSYNTHESIS, REDUCTION
  • Recep Tayyip Erdoğan Üniversitesi Adresli: Evet

Özet

Herein, we have reported the synthesis, characterization and catalytic activity of highly stable gold nanoparticles (Au NPs) using red cabbage extract (RCE) under UV irradiation. The anthocyanin groups predominantly existing in RCE play an essential role for biosynthesis of stable Au NPs. The reasons for using anthocyanins: 1) they act as chelating agents for preferentially reacting with gold ions (Au3+) to form Au3+- anthocyanin complexes, 2) as light-active reductants for reduction of Au3+ to zero valent Au-0 under UV irradiation and 3) as stabilizing agent for preventing Au NPs from aggregation in high salt concentration owing to their unique salt tolerance property. We also demonstrate that how reaction time, concentration of RCE, pH value of reaction solutions and using one more reducing agent affected formation of the Au NPs. The stability of RCE Au NPs was comparatively studied with commercial (citrate stabilized) Au NPs against 100 mM salt (NaCl) solution. The RCE-Au NP showed reduction ability for conversion of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP). UV-vis spectrometry, transmission electron microscopy (TEM), dynamic light scattering (DIS) and zeta potential (ZT) methods were utilized to characterize the Au NPs. We demonstrated that how whole RCE (anthocyanins molecules are major component) can be used as photo-active reducing and stabilizing agents to form Au NPs in a short time under UV irradiation and strong reducing agent without additional agents.