Indian Journal of Pure and Applied Mathematics, cilt.56, sa.1, ss.99-112, 2025 (SCI-Expanded)
For a positive integer n we evaluate the convolution sum ∑al+bm=nσ(l)σ3(m) for (a,b)=(1,7), (7, 1), (1, 8), (8, 1), (1, 9) and (9, 1). We then use these evaluations together with known evaluations of other convolution sums to determine the numbers of representations of n by the forms x12+x22+x32+x42+2(x52+x62+x72+x82+x92+x102+x112+x122),x12+x22+x32+x42+x52+x62+x72+x82+2(x92+x102+x112+x122),x12+x1x2+x22+x32+x3x4+x42+3(x52+x5x6+x62+x72+x7x8+x82+x92+x9x10+x102+x112+x11x12+x122), x12+x1x2+x22+x32+x3x4+x42+x52+x5x6+x62+x72+x7x8+x82+3(x92+x9x10+x102+x112+x11x12+x122). We use a modular form approach.