Materials, cilt.18, sa.5, 2025 (SCI-Expanded)
To develop novel materials through the recycling of waste polymers and to enhance their mechanical and thermal properties, composites were synthesized using chain extenders (CEs), compatibilizers (PP-g-MA), and short carbon fiber (CF) reinforcements within recycled polyamide 6 (rPA6) and polypropylene (rPP) blends. The recycling of waste polymers holds paramount importance in the context of environmental sustainability. This study investigates the role of additives in effectively improving the properties of recycled polymers. The composites were fabricated using the twin-screw extrusion method and subjected to a comprehensive range of characterizations, including Fourier Transform Infrared Spectroscopy (FTIR), differential scanning calorimetry (DSC), molecular weight analysis, melt flow index (MFI), heat deflection temperature (HDT), tensile testing, impact testing, and Scanning Electron Microscopy (SEM). Additionally, ANOVA statistical methods were applied to analyze HDT, tensile, and impact test results. The findings of this research demonstrate that chain extenders and compatibilizers significantly enhance the mechanical properties of rPA6/rPP blends, while carbon fiber reinforcements markedly improve both tensile strength and impact resistance. Furthermore, the incorporation of rPP led to an approximately 4% reduction in hardness values; however, this loss was effectively compensated by the addition of chain extenders and CF reinforcements, resulting in an overall increase in hardness. It was observed that chain extenders enhanced the elastic modulus and tensile strength by reinforcing interphase bonding, whereas CF reinforcements strengthened the polymer matrix, leading to improved impact resistance. These findings emphasize the synergistic role of chain extenders, compatibilizers, and CF reinforcements in enhancing the mechanical properties of rPA6/rPP blends. The study underscores recycling as both an environmentally beneficial and effective strategy for developing durable, high-performance composites for industrial use. Consequently, the utilization of recycled polymers contributes substantially to the circular and sustainable materials economy, demonstrating the potential for the widespread industrial adoption of such composites.