Numerical investigation for convective heat transfer and friction factor under pulsating flow conditions

Aslan E., ÖZSABAN M. , Ozcelik G., Guven H. R.

11th International Conference on Computational Heat, Mass and Momentum Transfer (ICCHM2T), Cracow, Polonya, 21 - 24 Mayıs 2018, cilt.240 identifier identifier

  • Yayın Türü: Bildiri / Tam Metin Bildiri
  • Cilt numarası: 240
  • Doi Numarası: 10.1051/matecconf/201824001003
  • Basıldığı Şehir: Cracow
  • Basıldığı Ülke: Polonya


For pulsating flow, the behaviours of the convective heat transfer and friction factor for a periodic corrugated channel are investigated numerically. The finite volume method is used in the numerical study. Three different Reynolds Averaged Numerical Simulation based turbulence models, namely the k-omega model, the Shear Stress Transport (SST) model and the transition SST model are used and compared. The results are also compared with the previous experiments for non-pulsating flow. Analyses are conducted for air flow through a corrugated channel which has sharp corrugation peaks with an inclination angle of 30 degrees and a 5mm minimum channel height. Reynolds number is changed in the range 6294 to 7380, while keeping the Prandtl number constant at 0.70. A sinusoidal pulsatile flow condition which is F=400 and u(A)*=0.5 is used. Variations of the Nusselt number and the friction factor with the Reynolds number are studied. Non-pulsating flow results and pulsating flow results are compared with each other.